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This work is a theoretical and experimental study of steady-state

and time-dependent characteristics of the positive column and the hollow

cathode discharge (HCD). It forms part of a wider program on plasma

turbulence.

The steady state of a non-isothermal, cylindrical positive column

in an axial magnetic field is described by three moment equations in

the plasma approximation. Volume generation of electron-ion pairs by

single-stage ionization, the presence of axial current, and collisions

with neutrals are considered. The theory covers the range from the low

pressure, collisionless regime to the intermediate pressure, collisional

regime. It yields radial profiles of the charged particle velocities,

density, potential, electron and ion temperatures, and demonstrates

similarity laws for the positive column. The results are compared with

two moment theories and with experimental data on He, Ar and Hg found

in the literature for a wide range of pressures. A simple generalization

of the isothermal theory for an infinitely long cylinder in an axial

magnetic field to the case of a finite column with axial current flow is

also demonstrated.

The excitation characteristics of the current-driven ion acoustic

instability are studied by a linearized kinetic model for a weakly

ionized plasma, which predicts convective instability for typical

positive column conditions. The calculated spatial growth rate shows

frequency dependence similar to the amplitude spectra of the instability

measured in our positive column experiments in He and Ar. The results

point to the important role of collisionless ion Landau damping of the

instability for such experimental conditions.

Results of measurements of steady-state characteristics of our HCD

apparatus are presented, and the influence of discharge conditions on

the excitation and suppression of self-excited, low-frequency instabili-

ties is studied. The spatial variations of amplitude and phase of
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density and potential fluctuations of two such modes are presented, and

it is concluded that the ambipolar radial electric has a major role in

driving these instabilities. A linear perturbation analysis is given

for a model based on a fluid description of a collisionless, cylindrical

plasma column in the presence of a static axial magnetic field and with

radially-varying number density and radial electric field. The insta-

bilities are identified as centrifugal flute modes, driven by Hall drift

in the presence of a density gradient and non-uniform radial electric

field. The identification is based on reasonable agreement between

theory and experiment of the observed and calculated frequencies, mode

numbers, and the spatial variations of eigenfunctions of the density

and potential fluctuations.
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1. INTRODUCTION

The work to be described in this thesis represents the first steps

in a study, both experimental and theoretical, of the turbulent state in

two common laboratory plasmas: the positive column and the hollow cathode

arc discharge (HCD). Plasma turbulence is normally the result of non-

linear saturation of linear instabilities, driven by sources of free

energy in the plasma. For example, the ordered motion of the charged

particles, induced by an applied electric field, can cause wave growth

when sufficiently strong current passes through the plasma. The insta-

bility saturates by some nonlinear mechanism at an energy level which is

often significant with respect to the thermal level, so that the macro-

scopic steady-state plasma characteristics may be altered considerably

from their values determined by collisions. While the linear theory of

plasma waves and instabilities is well established, and in many cases

well confirmed by experiments, much remains to be done toward under-

standing the nonlinear plasma processes. There have been extensive

developments of nonlinear theories, but very few firm experimental

results to confirm them or distinguish among rival theoretical models.

The presence of turbulence in plasmas is important to workers whose

ultimate goal is to achieve controlled thermonuclear fusion, because it

often increases plasma resistivity and thus causes heating; but it may

also enhance plasma particle diffusion across magnetic field, and thus

be detrimental to plasma confinement. The HCD simulates fusion-type

plasmas more closely than the positive column, and is consequently more

appropriate for studying turbulence problems relevant to fusion. However,

as discussed in Section 4, it is very difficult to describe theoretically

many of the observed features of the HCD. We have considered it worth-

while to consider simpler systems first, such as the positive column,

because some of the observed features of the HCD can then be predicted,

and physical processes responsible for them elucidated.

Our approach to the subject of plasma turbulence is in three steps:

first, theoretical models and their experimental verifications are given

for the steady-state characteristics of the discharges of interest.
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Next, it is important to determine whether these steady states are

stable against small perturbations. Here, we examine the excitation of

low-frequency, self-excited instabilities in two kinds of plasma sources.

We report observations of instabilities and develop suitable theoretical

explanations for them. The emphasis on low-frequency oscillations stems

from their strong influence on ion motions: they are important for

plasma heating, and are also responsible for decreasing the effectiveness

of plasma confinement by a static magnetic field. Finally, detailed

studies of the saturated instability spectrum and charged particle

velocity distributions should be made to determine the character of the

interchange between electromagnetic and particle kinetic energy. Our

work brings us only to the edges of this last, and most difficult area.

It is being investigated further by other members of the Experimental

Plasma Physics Group at Stanford.

1.1. Positive Column: Theory and Experiment

At low or medium pressures, the positive column consists of

neutral particles, ions, and electrons. The number densities of positive

and negative charges are nearly equal, and much lower than (< 1%) the

number density of neutrals. Collisions of charged particles with neutral

particles only are important for describing the observed phenomena, so

that Coulomb-type collisions may be neglected. The mean free path

between successive collisions is larger than the discharge radius at low

pressures, and smaller than the discharge radius at medium pressures.

The fast electrons charge the walls of the discharge negatively when it

is first initiated, and the name derives from the positive charge of the

body of the column with respect to the walls.

The first theoretical descriptions of the steady state of the

positive column appeared almost 50 years ago,1, 2 and have since been

extended to explain observations of both steady-state and time-dependent

characteristics of the column.3, 4 Section 2 generalizes the existing

isothermal theories to include radially-varying electron and ion tempera-

tures. The model is based on the first three moments of the Boltzmann

equation for electrons and ions. It is shown that although the electron

temperature is not a strong function of radius, the ion temperature is.
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Close to the wall, the ion temperature is much higher than the neutral

temperature.5 Since there are no experimental data on ion temperature

in the positive column, many authors assume it to be equal to the neutral

temperature. Our results show that such an assumption is not justified.

It is shown in the Appendix that the results of an isothermal theory

developed for an infinitely long plasma column by Ewald et al. 3 can be

readily generalized to describe a cylinder of finite length. 6 This is

relevant to the case of a positive column in a strong static axial

magnetic field, when the radial motions of particles are effectively

collision-dominated, and the axial motions are collisionless. Conse-

quently, the axial loss of particles dominates the total particle loss,

even though the physical length of the discharge is much larger than

its radius. A similar simple extension to the non-isothermal theory of

Section 2 could not be found.

In Section 3, we discuss ion acoustic waves excited by passage of

7current through a positive column. The instability is microscopic,

i.e., it arises as the result of deviation of the electron velocity

distribution function from a local Maxwellian. Accordingly, our theory

employs a linear kinetic model of a weakly ionized plasma. The wave

dispersion characteristics are analyzed, and shown to predict convective

instability, i.e., spatial amplification. The theory is capable of

explaining the instability onset characteristics measured in our

positive column experiment. Comparison of theory and experiment further

demonstrates the importance of collisionless ion Landau damping of the

wave for typical experimental conditions.

The linear theory is limited to small perturbations, and cannot

explain characteristics of the wave when it is strongly excited. A

discussion of some nonlinear models reported in literature which may be

relevant to our positive column experiment is given at the end of Section 3.

1.2. The Hollow Cathode Arc Discharge

The HCD of the type studied here is formed as an intense,

high-pressure are inside a hollow cathode, through which gas flows.

Charged particles and neutrals diffuse into an evacuated chamber, and are con-

fined near the axis by a static magnetic field, where they form a high-density,

3



highly-ionized (up to 99%) core, with relatively tenuous external plasma

surrounding it. This type of discharge was described in the literature
8

for the first time only about 15 years ago, while theoretical work on

its characteristics is even more recent. Even though much work has

been reported dealing with the HCD, theory and experiment are still not

in close agreement. There is also a lack of experimental data on some

important steady-state characteristics, which makes the formulation of

theoretical models even more difficult. Section 4 reviews the experi-

mental results and related theoretical work reported in the literature

during recent years, and serves to put in proper perspective our work

on the HCD.

Section 5 presents the results of our measurements of steady-state

and time-dependent HCD characteristics, which have led to the identifi-

cation of two observed instabilities as centrifugal flute modes. The

theoretical model of Section 5.2. for the fluid-type (macroscopic)7

10
instability, was developed in the Ph.D. thesis of Rognlien, and uses

the measured steady-state parameters of our HCD. Favorable comparison

between the calculated radial variations of the eigenfunctions and the

measured radial variations of amplitude and phase of potential and

density fluctuations of the two observed instabilities is demonstrated. 1 1

In contrast to the positive column, Coulomb collisions are of

primary importance in the HCD. A thorough description of the steady

state of the HCD, of the type developed by Section 2 for the positive

column, is lacking, but some insight can be gained into the processes

in the HCD from the results of Section 2. For example, the observed

negative radial electric field in the HCD indicates that energetic ions

are confined near the axis more effectively than by the static magnetic

field alone, while the observed magnitude of the radial electric field

implies the ions to be significantly more energetic than the neutrals

(Section 2.3.2.).

Possible extensions of the present research, with an emphasis on

the turbulent heating problem, are discussed in Section 6.
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2. THEORY OF AN INFINITELY LONG, STEADY-STATE,
NON-ISOTHERMAL POSITIVE COLUMN IN A MAGNETIC FIELD

The early theoretical descriptions of the positive column are of

two basic types, depending on the pressure range of applicability. 1 ,2 , 12 - 1 4

Both types provide information about the radial distributions of poten-

tial and density, with electron and ion densities assumed to be equal,
and the electrons assumed to be isothermal and Maxwellian. At low

pressures, the Tonks-Langmuir free-fall theoryl,12,13 assumes ions to be

generated in the Volume, and then to move without collisions to the wall,
under the influence of the self-consistent electric field. At high

pressures, Schottky's isothermal ambipolar diffusion theory describes

both ion and electron motions as dominated by collisions, and yields a

radial density profile in the shape of a zero-order Bessel function for
2

a cylindrical column. These theories were extended to include energy

transfer from electrons in collisions with neutrals in order to explain

the observed similarity laws. According to these laws the ratio of axial

electric field to pressure, Ez/P , electron temperature, Te , and

the ratio of axial density to current density, n(O)/J , depend on p

and a only through the pressure-radius product of the column, pa.

These theoretical analyses up to 1955 are reviewed by Francis.14

Several positive column theories which treat the experimentally

important pressure range between the above two limits have appeared in

the last ten years. Using the ambipolar diffusion assumption, Perssonl5

noted that retaining the nonlinear ion inertia terms in the momentum

equations leads to a natural boundary where the ion velocity is equal to

either the isothermal or the adiabatic sound speed, depending on the

assumptions of the model. At the boundary, the gradients of velocity,
density, and potential have infinite values, even in the presence of an

16
axial magnetic field, while the density is non-zero, contrary to the

assumption of Schottky's theory.
17

Kino and Shaw treated a low-pressure discharge column by moment

equations for collisionless ions and Maxwellian electrons. This

approach was expanded by Self and Ewald (SE)1 8 to include the effects of

collisions with neutrals of both electrons and ions. Their theory may

5



be applied for pressures between the free-fall and diffusion regimes.

It predicts correctly the results of free-fall theory at low pressure,

and ambipolar diffusion theory in the high pressure limit. Next, Ewald,
3

Crawford and Self (ECS) included the effects of an axial magnetic

field. Another theory based on isothermal electrons and ions, which

neglects magnetic field effects on the ions and shows the transition

between the low and high pressure limits, was presented by Forrest and
19

Franklin. In addition, they derive the dependences of electron tempera-

ture on axis on pressure and on magnetic field, by using modified plasma
1,2

balance equations, which connect together the column radius, electron

temperature, and ionization rate.

The ECS model was extended by Self, who added the ion energy equation

and solved for the elements of the ion pressure tensor to obtain a

description of the ion kinetics in the adiabatic and collisionless (low

pressure) regime.2 0 Ecker and ZZller2 1 also gave a non-isothermal theory,

but considered only the heat conduction from electrons to neutrals, so

that their theory applies to high-current, high-pressure discharges.

The present theory extends the ECS analysis to include spatially

varying electron and ion temperatures. Thus, in addition to collisions

of ions and electrons with neutrals, and magnetic field effects, as

introduced by the ECS theory, electron and ion energy equations are added.

The ionization frequency varies with electron temperature, and there is

an axial current present which provides the energy input necessary for

maintaining the discharge.

The additional equations enable us to develop a more complete

physical picture of the positive column than the above two-moment models,

which need the value of temperature as an input parameter, and do not

consider the energetics of the discharge. Once the working gas is

specified by its collision frequencies, and the pressure-radius

product (pa) of the column is assigned, the values of on-axis tempera-

ture and the ratio of the axial electric field and pressure are deter-

mined as eigenfunctions of the model, as is the ratio of the on-axis

density to the mean current density of the discharge. Integration of

the equations further specifies the radial variations of electron and

6



ion velocities and temperatures, potential, density and ionization

frequency.

The model to be analyzed will be discussed in Section 2.1., while

the method of solution will be dealt with in Section 2.2. The results

of the theory will be compared with experimental results, and results of

other theories, in Section 2.3. Finally, Section 2.4. will discuss some

of the discrepancies between theory and experiment in relation to the

simplifications introduced in the formulation of the model.

2.1. The Model

2.1.1. Moment equations

We shall consider an infinitely long plasma cylinder

immersed in a uniform static magnetic field, Bz . The plasma is taken

to be quasi-neutral, i.e., the ion and electron densities are assumed

to be equal, ne = ni = n . This is the plasma approximation; Poisson's

equation is not used, so that the model does not describe the sheath.

The moment equations of the steady state (Q/ t = 0) are derived by

taking moments of the Boltzmann equation, as described by Braginskii.22

We write the moment equations for electrons and ions separately and use

subscripts e and i for the two species. Only collisions of ions

and electrons with a homogeneous neutral background will be taken into

account.

The first moment equation is the continuity equation,

IS (nv) = nv , (2.1)

where electrons and ions are assumed created at a rate proportional to

the local plasma density, with the ionization frequency, v , a function

of electron temperature, and thus of position.

The second moment equation is the equation of momentum transfer,

q ( + X (nT)
Q m nm _ v , (2.2)

where q and m represent charge and mass of the particles,

7



I I
S= v + v , where v is the effective momentum transfer frequency for

collisions with neutrals, and T is the temperature in energy units.

The continuity and momentum transfer equations in the isothermal

approximation were discussed in Refs. 3 and 18, where it was shown that

the assumptions of neutrality and scalar pressure are invalidated near

the boundary. However, oollisionless theories which consider the sheath

12,13
correctly by using Poisson's equation show that the sheath thickness

is small compared to the discharge diameter for typical experimental

conditions, so that the phenomena in the positive column are well described

even when the plasma approximation is made. Space charge effects in dis-

charges become important at extremely low pressures and low current
23

densities, which are not typical positive column conditions.

The third moment equation is the energy transfer equation. After

using the adiabatic assumption ( g = 0 , where Q = mn < u2U' >/2

and u t is the particle thermal velocity) and the continuity equation,

this becomes

v.V + T+v ( + T =qv E+I (2.3)
2 2 2 7

where I is the collision integral, which represents the energy exchange

per particle of one species due to collisions with particles of other

species, in this case with neutrals. I = (1/2n) mw2 (f/at)c dw , where

w = v + u' is the particle velocity, and v = (w) is the drift velocity.

The electron collision integral describes elastic electron-neutral

collisions in which on average the electron loses all of its momentum and

the fraction 2 me/(me + m ) of its energy, and inelastic ionizing colli-

sions in which the electron loses energy equal to the energy of ionization
I

of the particular gas, E . Since T >> T , m << m ande n e n
me/mn me/mi , where subscript n refers to neutrals, we have

I = - C I - ( e T (2.4)
e . e



Energy losses due to collisions in which neutrals are excited, which are

important in molecular gases, processes of stepwise ionization, and

Coulomb collisions are neglected.

The ions are assumed to be created with temperature equal to that

of the neutrals. As shown by results of measurements presented by
24

Brown, charge transfer is the dominant mechanism affecting the motion

of low energy ions in their own gas. Thus, an ion loses all its momentum

and excess energy to neutrals at the rate described by vi , and the ion

collision integral becomes

3 1 3
I v T n  v i (Ti - T ) . (2.5)

The numerical factors in Eqs. (2.4) and (2.5) follow from defining

temperature as T = m (u,2)/3.

The electric field is static, E = - v , where c is a scalar

potential function. Since we do not include variations with the azi-

muthal coordinate 0 , E = - ( c/ r)a + E a , where E is a
-r z -z z

spatially uniform axial electric field and a r', a are unit vectors.

The energy equations [Eqs. (2.3)-(2.5)] describe how the external

power input qv E , on the right-hand side of Eq. (2.3) is expended in

increasing the internal energy of the particles and in losses due to

collisions and flow to the walls. The implications of neglecting the

heat fluxes and radiation losses, which simplifies our calculations

considerably, are discussed in Section 2.4. Electron-ion collisions

and volume recombination are not important, except at very high densities.

The wall acts as a sink for electrons and ions, and keeps the neutrals

at room temperature.

2.1.2. Collision frequency for ionization
I

The ionization frequency, v , describes the single-

stage process of generation of ion-electron pairs in inelastic collisions

of energetic electrons with slow neutrals. The probability for this

process to occur P(w ) (since w >> w ) is zero for electrons withe e n
kinetic energies below the ionization energy, and then increases steeply

with electron energy. At still higher electron energies, the ionization

9



probability maximizes and then decreases for very high electron
25 I

velocities. To calculate v , we start from

I 1
S= P (w e)Wef(w e) dw , (2.6)

where we is the electron speed, f(w e) is the electron distribution

function, p is the neutral gas pressure, and the integration is

performed for we > (2/m)1/2 We assume a linear dependence of

P(w ) on electron energy above the ionization energy, with slope a
e 25 20 E/m)

as tabulated by von Engel for various gases, P(we) = (mea /2e)(w - 2/me

where e is the electron charge.

The electrons drift axially due to axial electric field, so for

f(w ) we use a Maxwellian drifting in the z-direction,
e ex m w2  w2  w - v )2]  wh r

f(we) = (m/2T)3/ 2 exp [w2+ w2 z De 2]/2T , where subscript
x y 2 2 2 2

e is understood for m and T ; w w + w + w , and vD is the electron
e x y z De

axial drift velocity.

Equation (2.6) can be evaluated in spherical coordinates. After

integrating out the angular dependences, we obtain

v I (Te' De) =

aPm m 1/2 2

e /2 42EI w )exp[- W-De)2 ]-exp -(w+vDe)] dw
vDe

(2G)1/2

(2.7)

where subscripts e are understood for m, T, and w . This integral

can now be expressed in closed form as a sum of weighted exponential and

error functions. The final expression is rather lengthy, and will not

be reproduced here. For zero drift, Eq. (2.7) reduces to the expression

which is often used as an approximation for v in theories of the
14

positive column,

10



I 4a0p 3/2 /( )
v= 4T 2 2 +- exp . (2.8)

e (2me) e e

Use of the linear approximation to P(we) in Eq. (2.6) is appropriate

for a positive column, since there are very few energetic electrons to

be affected by the deviation from linearity of P(we) at high energies.

The representation of f(we) in Eq. (2.7) by a drifting Maxwellian is

an improvement over Eq. (2.8) which is significant at low pressures,

when the drift velocity becomes a sizable fraction of the thermal velo-

city. We are, however, neglecting the effect of transverse velocity

truncation at the wall, which decreases. v , and the effect of magnetic

field on v , which increases the total velocity by introducing the

azimuthal drift velocity into f(w ), and thus increases vIe
In view of the approximations made above, we should expect our

theory to hold at very low pressures, and to start breaking down as

pressure is increased to near 1 Torr, the exact limit depending on the

gas.

2.2. Method of Solution

2.2.1. Normalization and component equations

Equations (2.1)-(2.3) will now be separated into

their cylindrical polar components, noting that 0/ = $/az = 0

First, let us define the following dimensionless quantities:

I V m eB eE
V i e z zc - B --- C=- M :
v ' v m. ' my I m /e e i ee elm )

e e e(m 0
m 1/2

s av 1/2 N n(r) W V e,i

= ae N n(0) - I e,i I (2.9)
\ E

11



Note that even though some symbols are the same, the normalization is

very different from that of the ECS theory,3 which uses electron

temperature and ionization frequency as normalizing parameters, both of

which are variables here.

The collision frequencies used in this model are directly proportional

to pressure. Consequently, the normalized quantities a and B are

independent of pressure, while P is proportional to Ez/p , with the

constant of proportionality depending only on the gas type. The

collision frequencies may be calculated from electron drift velocity
24 25

and ion mobility data presented by Brown and von Engel. The values

for He, Ar and Hg are presented in Table 2.1, together with the constants

of proportionality used for calculating ., V and M.

Equation (2.1) for electrons and ions in dimensionless form becomes:

Continuity:

u du d In N
-+ -- + u- . (2.10)
s ds ds

The component equations of momentum transfer become:

Electron momentum:

u2 dV
du Ue + dW e d In N

u ds s ds e ds e ds

du e6u 
P

u - = Mu - (a + 1)u u- u - (2.11)
ds eO eO s ez 1+ a

Ion momentum:

2
1 duui8 dW id. d in N
- u - + ( + B)u = --- + Mui - V

ds s ds iO ds i ds

du.
du s - - MCu - (a + B)ui 6 - u. u U.z = aC (2.12)

s eiz +B12

12



TABLE 2.1

Collision data and numerical conversion

factors for various gases

V /P vi/p E /pg T/V pa /sO  B /pM

Gas [10 9 /sec Torr] [10 /sec Torr] [V/cm Torr]l [eV] [Torr cm] [G/Torr]

He 2.2 3.0 260 2 4.5 0.094 126

Ar 5.0 2.0 474 1 .7 0.0o2 503
Hg 8.6 2.1 662 10.4 0.016 490



The scalar energy equations in normalized form are:

Electron energy:

) ( ) dV
u 2 (+ - 1 + + Ue2 + MU U + u ds

ds 2 2 s) eO eMe 2 ds

u - - a + 3C V (2.13)
ds + 2 (2 e

(1 + )2

Ion energy:

2 2du
+  - +  

- uMui +  d
ds 2/2 sC i+ 2 ds

= -u - +  + (a + B) V - (5a + 3B) - . (2.14)
ds (a + B)2  n

To complete the set, we have the expression for ionization frequency,
Ca(Ve,uDe), which follows directly from Eq. (2.7). Since VDe = Vez , it
follows from the expression for uez , Eq. (2.11), that a = a(Ve ,c)

2.2.2. Starting values for integration

The next step is to manipulate Eqs. (2.10)-(2.14)

algebraically in such a way as to obtain a system of seven coupled non-

linear differential equations of the form

dY /ds = F Y2' Y"7)  j = 1,...7 , (2.15)

where Y1 = u, Y2 = ui' 3 =  ee ' 4 = N, Y5 , Y6 = Ve' 7 = Vi
are the normalized variables whose variation with s we want to find,

and Fj are the corresponding nonlinear algebraic expressions involving

the above variables. These differential equations may be integrated

simultaneously by numerical methods, together with the subsidiary relation

14



for a , starting from the axis. There are numerical difficulties on
-i

axis due to the s terms, so that Taylor expansion of the equations

must be performed, and the integration is started close to the axis.

It is assumed that the potential, the velocities and the first derivatives

of the temperatures, density and potential with respect to radius are

zero, while N = 1, at s = 0.

The energy equations yield two additional relations which determine

the values of the electron and ion temperatures at the axis in terms of

the collision frequencies and the axial electric field. At s = 0 , the

electron energy equation reduces to

VeO 2 -0 1 0 + 6c) , (2.16)

while the ion energy equation becomes

i L + (%a B)v ico + 3B) (2.17)

(Uo + B)20/

where the ionization frequency, aO ' is understood to be c(V e) in

both equations.

The value of on-axis electron temperature, Ve0 , follows from the

simultaneous solution of Eqs. (2.7) and (2.16). A double iteration

numerical procedure is used to obtain a corresponding pair of values

(V eO' 0 ) for each assigned .

Since for VeO > 0 Eq. (2.7) implies c > 0 , it follows from

Eq. (16) that P > 0 . In case of a << 1 , this condition reduces to
II

ev E > v . This means that the energy gained by an electron from

the axial current must be sufficient to at least offset the loss of

energy due to inelastic ionizing collisions. It follows that the positive

column must be supplied with energy from the outside, in this case via

axial current.

15



2.2.3. Integration and location of radial boundary

It remains to derive, and then to integrate numeri-

cally, the differential equations expressed by Eq. (2.15). The first of

these is

du _1
ds- 5(V+V) (2.18)

ds 5(V e+V - 3u (1+1/C)

where
2 2 + a (a + 2B)C

+ = + 2B) 3 (a+B)V - 2a - 6CV - 3BV.
(1+a) (a+B)

+ u2 [4a (1+1/C) + 5(B+C)/C] + (2+a)ue2 + (2B+Qo)u 2/c

- Mu(ui -ue) - [5(V+V i ) + (u2 + ui/C)]u/s

Equation (2.18) shows that the gradient of the radial velocity becomes

infinite when the velocity becomes equal to the adiabatic ion acoustic

speed, va = [5(T +Ti)/3(m+mi)]1/2 . As discussed by Persson, 5,16

this singularity determines the position of the radial boundary, i.e.,

the coordinate sO where the integration of Eq. (2.15) is to be termi-

nated. If the electron nonlinear inertia terms had not been retained

in Eq. (2.11), the singularity in Eq. (2.18) would depend on magnetic

field, and the adiabatic ion acoustic speed would not be obtained at the

boundary.

It follows from Eqs. (2.11) and (2.12) that the slopes of u
eG

and uie are not infinite at s . The slopes of density, potential,

and the electron and ion temperatures are infinite at sO , however, as

may be seen by forming the remaining four expressions of Eq. (2.15).

These are lengthy, and will not be reproduced here.

It is convenient to use s as the independent variable near the

axis, and u near the boundary, where it is numerically difficult to
3

handle large values of du/ds. It is found that the boundary coordi-

nate, so , decreases when M and a are increased. We keep a as a

variable throughout the integration.

16



Next, we derive a relation connecting the axial electron density,

n(0), and the mean current density in the column J = I/ra2 , where I

is the total current in the discharge,

a

I = 2/f env r dr , (2.20)
f z
0

where vz vi - v . Hence, in terms of normalized variables, we havez iZ ez

n O = K , (2.21)

where K depends on the gas type and pressure via the density profile,

v m2

eO e
K = e , (2.22)

2 2 I f s N [(+B+C)/(al)(OdB)]ds

0

where e = v /p and C << 1 in the expression for u The value

of K is established numerically in the course of integrating Eq. (2.15).

Once the integration is performed, and the radial boundary is

thus determined, the value of so yields the pressure-radius (pa) pro-

duct, since by Eq. (2.9), s = ave(me/E ) / 2 (see Table 2.1). By repeating

the integration for a wide range of values of E , we obtain the values

of e , Ve0 and n(0)/J for various values of s . By Table 2.1,

these correspond to dependences of Ez/p, Te0 , and n(0)/J , on pa;eO 14

they constitute the similarity laws for the positive column.

2.3. Results

2.3.1. No magnetic field

Similarity laws: The results of simultaneous solution of Eqs. (2.7)

and (2.16) are presented in Figs. 2.1 and 2.2. The broken lines in

both figures indicate the simultaneous solution of Eqs. (2.8) and (2.16)

for He, and show that the effect of drift on the ionization frequency

17
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FIG. 2.1. The dependence of normalized ionization collision frequency

at the axis on normalized axial field for various gases. The broken

line is the result for He without axial drift in the ionization

frequency.
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FIG. 2.2. Comparison of calculated (full lines) and experimentally-

measured (points) dependences of TeO on E /p for three gases.eQ z

Experimental data from Refs. 14, 26-28. The broken line is

calculated for He without axial drift in the ionization frequency.

19



becomes significant at low pressures. Figure 2.1 shows that c << 1

for a wide range of values of P which correspond to high pressures,

and that a depends in a very similar way on p for the three gases

shown. In Fig. 2.2 the V e(8) dependence has been converted to

Te 0 (Ez/p) by using the conversion factors in Table 2.1. This enables

direct comparison with experimental points indicated in the figure. The

three gases considered here were chosen because results of measurements

for a wide range of pressures are to be found 
in the literature.1

The integration of the full set of equations is performed next by

numerical methods for a wide range of e values. The resulting

dependence of the boundary sO on p , and thus on VeO , corresponds

to dependences of TeO and Ez/p on pa , as explained in Section 2.2.3.

The results are shown in Figs. 2.3 and 2.4 together with experimental

data. The broken lines again indicate results for He when vDe = 0 in

Eq. (2.7).

When comparing experimental data with calculated curves, one should

bear in mind that measurements on the positive column represented by

points in Figs. 2.2-2.4 are results of Langmuir probe measurements, which

are subject to errors of typically ± 107%. In addition, the results of

nominally identical experiments show additional spread, presumably due

to differences in factors such as errors in pressure and current density

measurements, and the presence of impurities in the gas.

The agreement of theory and experiment demonstrated by Figs. 2.2-

2.4 for He is good for a wide range of pressures. The effect of drift

on the ionization collision frequency is significant at low pressures.

The comparison of experiments and computations is not so favorable for

Hg and Ar, probably because our model neglects such effects as radiation

and secondary ionization in these gases. The agreement is poorest for

the dependence of Ez/p on pa , while the differences between theory

and experiments for Te0 are within 30%.

The results of evaluating Eq. (2.21) for He, Ar and Hg for a range

of pa values are shown in Fig. 2.5, together with experimental
26-28

points. The broken lines are results for He for non-zero

magnetic field to be discussed in the next subsection. The agreement

20
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FIG. 2.3. Comparison of calculated and experimental TeO(pa)

dependences for He, Ar and Hg. Notation as in Fig. 2.2.
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Notation as in Fig. 2.2. The broken lines are calculated values for He

in non-zero magnetic field.



for He is good, especially at low pressures, while the other two gases

again show poorer agreement.

Radial profiles: The radial profiles of normalized plasma density,

potential, electron temperature, ambipolar radial velocity, and ion

temperature in He for various pa values are shown in Figs. 2.6(a)-

2.6(e), respectively. The results in Figs. 2.6(a) and 2.6(d) agree

qualitatively with the results of two-moment theories. Both theories

predict that the velocity profile is flattened with increasing pressure,

and that the density profile becomes steeper at higher pressures. For

comparison, some results of Ref. 18 are plotted as broken lines in

Fig. 2.6(a). Direct comparison is not possible, because the two-moment

theories cannot identify a particular curve with a specific pa value,

but it is seen that our results fall between the high- and low-pressure

limits of the two-moment theory.18

The electron temperature variation in Fig. 2.6(c) shows that the

temperature decreases with increasing pressure, as in Fig. 2.3, and that

the profile is somewhat steeper at low pressures. There is little

variation in the body of the discharge, but a drop occurs near the wall.

The profiles of potential, when inverted, and ion temperature,

Figs. 2.6(b) and 2.6(e), resemble each other closely: at low pressures

both are steep, flattening out as pressure is raised. The axial value

of the ion temperature is very close to the neutral temperature at low

pressures, increases with pressure, and then returns to the neutral

temperature at high pressures. This may be seen by studying Eq. (2.17)

for various values of a and e , as dictated by Fig. 2.1.
Off axis, the ion temperature becomes much larger than the neutral

temperature, as anticipated by Bickerton and von Engel.28 The collision-

less theory of Sel f 0 also found that the maximum V. appears near the
1

wall, and that it is much larger than the neutral temperature. Fig. 2.6(e)

shows that T. 1 eV in He near the wall. Ion temperature is difficult1

to measure, since the intensity and broadening of spectral lines emitted

from the positive column are insufficient for accurate spectroscopic

diagnostics. This theory provides the Ti(r) variation, which is

important for calculating the ion Landau damping of ion waves propagating

in the positive column (see Section 3).
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FIG. 2.6. The radial variations of normalized values of (a) plasma density;

(b) potential; (c) electron temperature. The broken lines in (a) are

results of Ref. 18.
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Finally the variation of ionization rate, a , with radius is not

shown, because it follows closely the variation of electron temperature,

dropping off sharply as Ve starts to decrease. The actual radial

dependence of a may be deduced by combining Figs. 2.1, 2.2 and 2.6(c).

2.3.2. Magnetic field effects

Similarity laws: The presence of a static axial magnetic field

affects neither our ionization frequency nor our energy equations, so

that Figs. 2.1 and 2.2 still hold. The presence of magnetic field terms

in the momentum equations causes the normalized radial velocity to

become equal to the normalized adiabatic sound speed much closer to the

axis than without the magnetic field, so that the value of sO  is

decreased. Computer runs were made for He in order to determine the

similarity relations equivalent to Figs. 2.3 and 2.4 for non-zero mag-

netic field. The result is shown in Fig. 2.7 with Te0(pa) plotted

for various values of M . The corresponding dependence of Ez/p on

pa may be obtained by combining Fig. 2.2 for He with Fig. 2.7. Thus,

in the presence of magnetic field, TeO, Ez/p and n(O)/J are functions

of pa and Bz/P

Our theory introduces magnetic field effects through M , which is

directly proportional to the ratio of magnetic field to the pressure (see

Table 2.1). Thus, the magnetic field itself is not constant for a

curve with constant M in Fig. 2.7 when the pressure varies. Once the

column radius is specified, however, Fig. 2.7 may be used together with

Fig. 2.2 to see how Te0 and Ez/p are affected by the presence of

magnetic field. As an example, for a hypothetical 1 cm radius discharge

at a pressure of 10 mTorr, the axial electron temperature will be 17.2,

17.0, 14.5 and 10.0 eV for magnetic fields of 0, 13, 65 and 130 G,

respectively. The corresponding Ez is 1.60, 1.55, 1.10 and 0.50 V/cm,

respectively.

It follows from Eqs. (2.20)-(2.22) that n(0)/J should increase

with increase in magnetic field, since both Ez/p and the value

of the integral in Eq. (2.22) decrease with increase in magnetic field.

The solutions presented in Fig. 2.5 show the anticipated behavior, as do

measurements of Ref. 28.
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FIG. 2.7. The dependence of Te0 on pa for He in the

presence of an axial static magnetic field.
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The experimental data on the positive column in a magnetic field

are not as abundant as for the case of no magnetic field. Bickerton
28

and von Engel present results of measurements on a He column, but in

a range of fairly high pa values. They show that both Ez/p and

TeO decrease with magnetic field and pressure, as is also shown by our

Figs. 2.7 and 2.2. Thus, their observations agree qualitatively with

results of our theory, but no direct comparison similar to the previous

section can be made because of computational difficulties we encounter

at high pressures.

These numerical obstacles result from difficulties in performing the

integration of Eq. (2.15) for low values of Ve0 , which correspond

physically to high pressures. The difficulty may be understood by noting

from Eq. (2.10) that the slope of the radial velocity on axis is a/2 ,

which drops very rapidly as Ve0 decreases. Thus, in starting the

integration of Eq. (2.18) near the axis, the initial radial increase of

u becomes less than the rounding errors of computation for low values

of a , at which time the integration becomes impossible. The situation

is more complicated since seven coupled equations are integrated simul-

taneously. Furthermore, in the presence of magnetic field, the interval

of integration is reduced, and the integration has to start even closer

to the axis, so that the limit of high pressure values, where the inte-

gration becomes difficult, is reached for much lower pressures than

without magnetic field.

Radial profiles: Figures 2.8(a)-(e) show how the computed profiles

of normalized density, electron temperature, potential, radial velocity,

and ion temperature vary as the magnetic field is increased at constant

pressure. As already shown by results of two-moment treatments,3, 1 9

the radial velocity profile flattens as the magnetic field is increased,

[see Fig. 2.8(d)], while the density variation with radius becomes

steeper as the magnetic field is increased [Fig. 2.8(a)]. Similar

steepening of the density profile has been observed experimentally by

Little and Jones in a mercury-vapor column.29 The variation of potential

is similar to that described by the ECS theory.3 The lowest value of

magnetic field at which potential inversion occurs corresponds to
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FIG. 2.8. The radial variations of normalized values of (a) plasma density; (b) electron

temperature; (c) potential, for He at pa = 4.2 X 10-2 Torr cm and at various magnetic

field values.
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d 2W/ds2 > 0 at s = 0 in the Taylor expansion of Eq. (2.13). This
28

flattening of potential has been observed by Bickerton and von Engel

as magnetic field is increased. The variation of ion temperature with
20

magnetic field in Fig. 2.8(e) resembles the result of Self obtained

for the radial component of the ion pressure tensor. No quantitative

comparison is possible, however, since Self takes T = v. = 0 in his
n 1

model. The change of sign in the slope of the ion temperature is

related to the potential inversion, as may be seen by comparing

Figs. 2.8(c) and 2.8(e): when the radial electric field changes sign,

the ions are no longer attracted to the wall, but actually give up

energy as they move to the wall against the radial electric field.

The value of the ion temperature on axis has a strong influence on

the magnetic field value at which the potential starts to increase

radially. This may be deduced from the Taylor expansions of the momentum

and energy equations which connect together the second derivatives of

electron temperature, potential, and ion temperature on axis [expansions

of Eqs. (2.11)-(2.14)], with the second derivative of the density varia-

tion on axis. A more direct way is to assume uniform ion temperature

and vary it as an input parameter. In this way, it is seen that as ion

temperature is increased, the potential inversion sets in for progres-

sively lower magnetic fields, with the negative radial electric field

becoming progressively stronger. For example, it is possible to obtain

negative radial fields of the order of several volts per centimeter

with TiO/T eo 0.1. This may be important for intense, low-pressure,

hollow cathode arcs in a strong magnetic field, in which such strong

negative radial electric fields have been observed.11, 1 8 Our theory

implies that the ions in such arcs are very energetic with respect to

the neutrals (see Sections 4 and 5).

The radial variation of electron temperature in Fig. 2.8(c) indicates

that there is very little change as the magnetic field is increased.

The radial profile becomes flatter near the axis, and the drop in tempera-

ture becomes somewhat steeper near the wall, as the magnetic field is

increased at constant pressure.
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Finally, it may be noted that all curves with M 0 tend to the

curve with M = 0 at very low pressures in Figs. 2.5 and 2.7. This

may be explained by noting that as the pressure is decreased along a curve

of constant M , the magnetic field also has to decrease. Thus, even

for very high values of M at low pressures, the magnetic field tends to

be very low; conversely, at high pressures, even small values of M may

describe substantial magnetic fields.

2.4. Discussion

2.4.1. Limitations of the model

Fluid equations average out the detailed distribution

functions of electrons and ions, and cannot be accurate when the scale

lengths of the variables are comparable to the mean free paths of the

charged particles. On the other hand, the results of measurements by

probes also represent averages of detailed dynamics of charged particles,

and typically indicate Maxwellian or near-Maxwellian electrons within
14

the pressure range of this theory. Since this theory is meant to

explain the results of experiments, we feel justified in using the fluid

approach. A kinetic treatment along similar lines would be much more

complicated.

We have introduced some approximations in the fluid equations in

order to simplify the analysis, but also because we do not know of any

calculations of the transport coefficients for a weakly ionized plasma,

which would be as precise and as detailed as the corresponding calculations
22

for a fully ionized plasma. We investigate now the consequences of

these approximations for He, Hg and Ar, in the pressure range where we

expect our theory to be valid.

In approximating the pressure tensors by scalars, we have assumed

nearly isotropic distributions of electrons and ions. This is to be

expected if the drift velocities are considerably smaller than the thermal

velocities in the discharge. Comparison of Figs. 2.6(c) and 2.6(d)

shows this to be true for electrons in all cases, while Figs. 2.6(e) and

2.6(d) demonstrate the inapplicability of using the ion scalar pressure
20

near the boundary. This problem is resolved by Self, who calculates

the elements of the ion pressure tensor, and obtains results very similar

to our Figs. 2.8(c)-(e), as discussed above.
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By using the adiabatic assumption for the electrons, we have

neglected the radial component of a with respect to (5/2)n v T to
re

get Eq. (2.3). Since a precise expression for q for our conditions is

not available, we use the result of gas kinetic theory for heat transfer
22,30,31

in a collisional regime,

nT
= - KT , - (2.23)

my

At the high-pressure limit of our theory, with pa = 0.57 Torr cm,

p = 1 Torr, and midway between the axis and the radial wall [see

Fig. 2.6(d)], dTe/dr must be 0.3 eV/cm or greater, for the heat flux

term to become equal to or larger than the (5/2)nvrT term. Thus, the

approximation V.. = 0 implies a small temperature gradient, and is

marginally satisfied at the high-pressure limit of our theory [see

Fig. 2.6(c)]. As the pressure is decreased, Eq. (2.23) no longer holds,

and the thermal conductivity coefficient, . , decreases, due to marginally-

collisional conditions,3 0 so that the heat flux may be neglected.

Furthermore, the presence of magnetic field decreases K by a factor

M2(M 2 >> 1), reducing the heat flux even further. Similar consideration

of the ion heat flux shows it to be negligible under all experimental

conditions.

There is ample experimental evidence available to show that the

electron drift velocities in He and Hg are proportional to Ez/p in

a wide range of E /p values, which justifies the approximation of v

z 24,25independent of velocity. 2 5  For Ar, however, experimental results

show that this is not the case, and even very small amounts of impurities
24

significantly change the dependence of vDe on Ez/p 24 In the case of

ions, the situation is more complicated, due to the deviations of the

ion distribution function from Maxwellian in the low-pressure regime. As

we have already concluded above, the present model of ion motion must be

viewed with caution. However, the existing experimental results on ions

in the positive column are insufficient to enable us to treat the ions

differently.

The neglect of radiation losses in the energy equations is justi-

fiable at very low pressures, where electrons obtain large drift
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velocities between two successive collisions, so that a large percentage

of the collisions are ionizing. This is especially true in He, where

the first excitation level (19.8 eV) is relatively close to the ionization

potential (24.5 eV).25 A derivation of the similarity laws for He,

which includes the radiation loss, gives results which are very similar

to our Figs. 2.3, 2.4 and 2.5,27 so that we do not consider it necessary

to include radiation loss in analyzing He in our range of pressures. On

the other hand, Hg and Ar have excitation levels which are relatively

much lower with respect to the ionization level than in the case of
25

He, so that radiation and multi-stage ionization processes should be

important in the pressure range which our theory considers for these

two gases. A derivation of similarity laws, including radiation processes,

for an isothermal and uniform positive column in Hg shows this to be
26

true, since the agreement with experiment is better than that demon-
32

strated in our Figs. 2.3, 2.4 and 2.5 for Hg. Forrest and Franklin

discuss the relative importance of single- and multi-stage ionization

processes, and conclude that the multi-stage processes become increasingly

important as pressure is raised. Similar arguments apply to Ar.

2.4.2. Comparison with experiments

In conclusion, we have derived the radial profiles

of electron and ion temperatures in the positive column, and have shown

that the profiles of radial velocity, density, and potential are consistent

with results of two-moment theories. In addition, the electron energy

equation has enabled us to derive similarity laws for a positive column.

It is felt that the agreement with experiment demonstrated for He

is very satisfactory over a wide range of pressures. The discrepancy

at high pressures in Fig. 2.5 may be attributed to the neglect of

radiation losses and heat conduction losses.

The discrepancies between theory and experiment for Hg and Ar are

not serious for the calculation of. electron temperature (Figs. 2.2 and

2.3), probably because small changes in temperature effect large changes

in ionization frequency, Eq. (2.7). However, the large discrepancies in

Figs. 2.4 and 2.5 indicate that the basic elementary processes are not

sufficiently precisely described by our model for Hg and Ar. In the
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case of Hg, the process of multi-stage ionization effectively decreases

the ionization potential, and increases the ionization frequency. It

follows from Eq. (2.16) that Ve0 will decrease, and the agreement with

experimental data will improve. It would seem that in addition to the

inclusion of radiative processes, it is necessary, for Ar, to take

account of the dependence of vDe on Ez/p which is not linear, due
25

in part to the presence of a strong Ramsauer effect. However, there

are not sufficient experimental data to model vDe(Ez/p) in a wide

enough range of Ez/p values with satisfactory accuracy.

It is impractical to extend our theory in its present form to

higher pressures by including heat conduction, heat convection, and

radiative processes, due to computational difficulties. It may be

possible, however, to develop such a comprehensive theory without

magnetic field by using our approach, together with a numerical method

for solving Eq. (2.15) which would converge better at high pressures

than the present one, or by extending the high-pressure ambipolar

diffusion theory.

The comparison of theory with experiment is further restricted by

the presence of instabilities, which may saturate at a high enough level

to affect the steady state. Current-driven ion-acoustic turbulence

is often present in the positive column (see Section 3), while at high

pressures (p > 0.6 Torr in case of He 27), striations occur and produce

14,31local changes in T and in the ionization rate. The
e

presence of a magnetic field introduces additional destabilizing effects,

resulting in the excitation of numerous additional instabilities.4,29,33

In the case of the drift instability, for example, the radial diffusion

rate increases.34
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3. ION ACOUSTIC INSTABILITY ON THE POSITIVE COLUMN

The instabilities of the positive column in a magnetic field may be

classified into two basic types: macroscopic and microscopic. Macro-

scopic instabilities are described by fluid equations, and are the

subject of extensive theoretical and experimental work reported in the

literature. 4 '3 1 '3 3 '3 4 This section deals with another type of wave, a

microscopic instability occurring in the positive column in the absence

of magnetic field. It is driven by the deviation of the electron distri-

bution function from a local Maxwellian which results from the presence

of the applied electric field and associated current which maintains the

positive column (see Section 2). Since fluid equations do not consider

the details of the distribution function, they predict damped ion acoustic

waves for typical positive column conditions.33 Consequently, kinetic

equations must be used to describe the observed excitation characteristics

of the ion acoustic instability on the positive column.

Early investigations of this instability studied the transition

from the unstable to the stable r6 gimes (the instability boundary) for a

collisionless model.3 5 ,3 6 Subsequently, it was shown that although

electron-neutral collisions are negligible, ion-neutral collisions are
37-39

important for determining the instability boundary. Measurements

made on self-excited,35-37,39,40 and on externally-excited waves,36

yield the predicted values of wavelength, and the instability boundary.
3 9 '4 0

The phase velocity of the waves in the long wavelength (kXD << 1), low

frequency (w << W .) limit is equal to the ion sound speed; hence the
pl

name of the wave.

A comprehensive analysis of the excitation of ion acoustic instability

40
in a helium positive column has appeared recently. The model includes

collisions of electrons and ions with neutrals in the linearized kinetic

equations through a BGK-type collision integral.41 The resulting dis-

persion relation is analyzed in the approximation of negligible electron-

neutral collisions, zero ion drift, and negligible ion Landau damping

(Ti - 0), and it is shown experimentally that the observed saturated

frequency spectrum displays a maximum where the linear spatial growth

rate maximizes.
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The present work extends the study of the above dispersion relation,

and shows that the instability is convective for typical positive column

conditions. It is further shown that under typical experimental conditions

the ion Landau damping is not negligible. The full dispersion relation

is solved numerically to obtain the variation of the spatial growth rate

with frequency and with ion temperature. Comparison is made with

frequency spectra measured on positive columns in helium and argon.

The linear theory is presented in Section 3.1., the experimental

details in Section 3.2., and the comparison between them in Section 3.3.

The chapter closes with a discussion of nonlinear theories which deal

with the ion acoustic instability, in Section 3.4.

3.1. Linear Theory of Ion Acoustic Instability in a Weakly

Ionized Plasma

Consider a uniform, infinite, isothermal, weakly ionized

plasma immersed in a uniform field, E . The evolutions in time of the

electron and ion velocity distribution functions are described by

Boltzmann equations with BGK collision terms. These have the property

of preserving the local number density of particles, as well as their

momentum and energy, in close binary elastic collisions.37,41 The

linearized kinetic equations for electrons and ions, for propagation

40
along the z-axis, and the Poisson equation, are

flj af j .E 1f j (j = ein ,

+ w + f- v f f (j = e,i)
mt w z m. w j lj n j 'J Oj

(3.1)

1E e- (ni - n ) -(3.2)
az E 0 li le

where qi = e , q = -e ; v is the effective momentum transfer collision

frequency for charged particle collisions with neutrals, and linearization

is performed assuming that the perturbed quantities vary as exp i(Wt-kz).

The effect of the static electric field is included in the f
Oj

which are assumed to be drifting Maxwellian functions,
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= (noj/vtj)Tl/2 exp[ (~vD) 2 /vt2]. (3.3)

It is shown in Ref. 38 that Eq. (3.3) differs from a more exact result by
2terms of the order of (vDe/Vte) , where vDj =jEz/mv. and

v = (2T /m 1/2 . The ratio VDe/Vte is small ( l0c ) under typical

positive column conditions. Furthermore, it is shown in Ref. 40 that

retaining the (qjE /m.)(af 0j/v) terms, which are neglected in Eq. (3.1),

introduces only a small correction to the dispersion relation. The

effect is one of adding to vt  a small imaginary part which is propor-

tional to Ez . The consequence of the additional terms is to effectively

reduce vi , and thus cause the spatial growth rate of the instability

to be slightly larger (by about 10% under typical positive column

conditions).40

The kinetic equations are next solved for nlj , using the relation

n . =ffl dw , (3.4)

resulting in

-1 q i w -v Dj f dw

n -iv-kw (3.5)lj vj f0j dw

Ojj j

Combining Eqs. (3.2) and (3.4), we obtain the dispersion relation

2 G 2 GW G'(5k) ape G'(_ )
S pi k2 e eD(W,k) = 1 + + 2 0 ,e

ti 1 + i v-G( ) kvte 1 + G(kv t+ kv eti te

(3.6)

where
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2 2pj = e n0j/m j  O 6j = (Qj - i Ij)/k vtj, = CD - kVDj

-1/2lexp(-g2)G(C) = A d . (3.7)

C

Here, C is the Landau contour of integration, and G'(C) is the

derivative of G with respect to the argument. The contour C is the

real axis if Im[C] < 0 , and the real axis indented above = 5 , if

ImI[] r 0 41

Relation (3.6) is the dispersion relation which was analyzed in the

collisionless approximation in Refs. 35 and 36, and with the inclusion

of ion-neutral collisions in the ion rest frame, neglecting ion Landau

damping terms, in Refs. 37-40.

3.1.1. The approximate dispersion relation

In the range of experimental interest for the positive

column, the ion acoustic wave phase velocity is roughly equal to the ion

sound speed, /k vs [= (Te/mi)l/2]. As noted in Ref. 40, the following

velocity ordering is established in the positive column:

v ti << vs << De << Vte . This implies i > > 1 , Ce << 1 , so that the

functions G and G' in Eq. (3.5) may be approximated by the appropriate

asymptotic and power series expansions.41 When the exponential term

(which introduces ion Landau damping) is neglected in the asymptotic

expansions of G(Ci) and G'(Ci), Eq. (3.6) becomes

D(a,k) = 1 - pe 2e TT1/2+ (T -2)kv e
2 2 kvv

Sk vte te te

This relation, with the approximations of vDi , Ve = 0 , was shown to

yield temporal growth when solved for real k in Refs. 37 to 39.

Relation (3.8) may be solved for complex or real W and k , where

k = k + ik. , W = W + iw. , so that temporal growth implies w. < 0 ,r 1 r 1 1

while spatial growth in the + z direction implies k. > 0 . Reference 40
1
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considers both the solutions W(k real) and k(w real), and concludes

that the latter are appropriate to the experiment, since the positions

of the maxima of the observed frequency spectra agree better with the

maxima of k.(w real) than with the minima of w.(k real).
1 1

The answer to the question of which solution of the dispersion

relation is appropriate for describing the experimental situation is

dictated by the physical conditions of the particular system. As dis-

cussed by Rognlien and Self,42 special care is required in applying the

dispersion relation to a bounded physical system. We take the point of

view that the instability is a purely propagating wave, so that the

stability criteria derived in Refs. 43 and 44 for an infinite system

may be applied. This is justified by experimental data of Ref. 40,

which show that the instability grows in space away from a grid which

shorts out the wave, becomes saturated, and remains constant further

down the tube.

The criterion of Briggs43 consists in investigating the behavior

of the complex maps of either W(k) or k(w), in the vicinity of certain

special points. Once it is shown that unstable waves are possible, by

showing that W.(k real) < 0 for some range of parameters, further
1

study is required to determine whether the instability is convective or

absolute. The significance of making the distinction between the two

types of instabilities lies in the fact that the asymptotic time response

to a delta-function perturbation localized in time and space approaches

infinity at every point in the case of an absolute instability. A linear

analysis is consequently inappropriate for describing the experiment,

and some sort of nonlinear mechanism must be introduced to lead to

saturation. In the case of a convective instability, however, the

response to the delta-function excitation grows in space away from the

source, while the asymptotic time response is zero at every point. Thus,

a convective instability may describe the experimental situation of a

signal excited by a grid at frequency W and growing in space away from

the grid,up to the point where the signal is so large that nonlinear

effects must be introduced to lead to saturation. In this way, solutions

k(w real) will predict the spatial propagation characteristics of a wave

close to the instability boundary.
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Strictly speaking, the exact dispersion relation, Eq. (3.6), should

be analyzed for instability by the criteria for warm plasmas in Ref. 44.

However, this would present a formidable computational problem, due to

the transcendental nature of that equation. Even the analysis of the

polynomial approximation [Eq. (3.8)] must be done numerically. Conse-

quently, we present an analysis of an approximation to Eq. (3.8), which

has the property of being the least stable case, and it will be shown

that the ion acoustic wave is indeed convectively unstable for typical

experimental conditions.

Following Refs. 37-40, we consider the ion rest frame, taking

ve << k Vte , and W/k << vDe , which are valid for the positive column.

The resulting dispersion relation,

S2 2 0 2 (3.9)
u~nplv) k2 eF 1/2 deD(Lk) = 1 - + pe + i /2de
-(W - iv ) + 2 2 v '

S k vte te

is easily analyzed according to the criteria described by Briggs.4 3

Briefly, these state that an absolute instability exists if: (1) there

is a saddle-point in the complex k-plane, formed by the merging of two

poles which originated in opposite half-planes, as the Laplace contour

is analytically continued from w. - - o to the real W axis; and1

(2) that the saddle-point corresponds to a value of w with negative

imaginary part, Wsi < 0 . If these conditions are not satisfied,

the instability is convective.

The saddle points in the k plane are located by simultaneous

solution of the equations

6D
- , D = 0 . (3.10)

The result for Eq. (3.9) is
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Sl p 4Wi 2(3.11)

We see immediately that si > 0 , and that the instability is convective,

since Condition (2) above is not satisfied. Equation (3.11) shows that

the ion-neutral collisions are stabilizing. The electron-neutral colli-

sions make the wave slightly less stable, as is shown by numerical

results of the next subsection. This may also be seen from Eq. (3.8),

where ve and the Landau growth terms are of the same sign.

Equation (3.9) does not contain the ion Landau damping of the

instability, but has the electron drift term, which causes instability.

Furthermore, the approximations used in deriving Eq. (3.9) are consistent

with (3.11). Thus, since the main destabilizing effect is retained in

Eq. (3.9), while some stabilizing effects are neglected, it follows that

the convective instability of Eq. (3.9) implies the same type of insta-

bility for Eq. (3.6).

To show explicitly the destabilizing effect of the electron drift

velocity, let us neglect all collisions, while retaining the full 0e
term in Eq. (3.8). It may then be shown that

Im s] 3 - te (3.12)

which implies that when VDe/te = (3/Tr)l1/2 - 1 , si crosses the real

axis. While this by itself does not imply absolute instability, because

more study is essential to demonstrate that Condition (1) is satisfied,

it confirms that the electron drift velocity is a destabilizing effect.

We should note that vDe/Vte 1 0.2 for typical positive column conditions.

3.1.2. The exact dispersion relation

The approximate dispersion relation, Eq. (3.8), may

be used to predict the frequency in the ion rest frame at which the

spatial growth rate, ki , maximizes, but it is not useful for calculating
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k. () in the laboratory frame. This follows from the fact that as W
1

is increased from zero, the Doppler shift term, k rDi , increases more

rapidly than W (see Fig. 3.1.). Consequently, the Re [Eq. (3.8)] = 0

[Eq. (3.13)],which is used for calculating kr , becomes a divergent

expression for W/W.p - 1 , kXD 1 , where XD = (T 0 /ne2) /2 is the

electron Debye length. This is often the range of frequencies where

ki maximizes, so that Eq. (3.8) cannot be used for mapping the full

range of k.(w), when vDi 0 . In addition, the asymptotic expansion

of the ion part of Eq. (3.6), used in deriving Eq. (3.8), neglects the

important effect of ion Landau damping, which depends on the temperature

ratio T /Ti

In order to compare experimentally measured frequency spectra [see

Section (3.2)] with the linear growth rates, it is necessary to solve

Eq. (3.6) exactly, for k complex and W real. In doing so, we note

that G(-C) = Z(C), where Z(C) is the well known plasma dispersion

function,4 1 applicable when the convention exp[-i(Wt-kz)] is used for

the perturbed variables, and solve for Z(C) by numerical methods,

outlined in the Appendix of Ref. 45. Equation (3.6) is solved by assign-

ing the value of one of the two complex arguments, and generating the

corresponding value of the other complex argument, by a numerical

iteration procedure, so that D(W,k) = 0 holds.

The unstable ion acoustic wave propagates in the direction of the

electron drift, and we take E to be in the -z direction, to getz
growing wave propagation in the + z direction (the wave propagating in

the opposite direction is found to be strongly damped). Utilizing the

results of Section 2 for the relevant steady-state parameters of a

helium positive column, we find that the numerical solutions indicate

increasing spatial growth (ki > 0), as the discharge current is increased,

or the pressure decreased. This is consistent with the results of

Section 3.1.1. Figure 3.1 shows the dispersion relation, k (W), for

three values of the pa product (the dependence of normalized variables,

krXD (W/Wpi), on current at a fixed pressure is very slight), together

with the approximate relation,
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FIG. 3.1. The solution k (W real) of Eq. (3.6) for He and

various values of pa product. The broken line

represents Eq. (3.13); w = W/Wpi
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pi [1 + (krXD)2i/2 ' (3.13)

obtained from Re[D] = 0 in Eq. (3.9), with v. << W . The approximation
1

is seen to become progressively worse as krXD increases. The calculated

variation of the spatial growth rate with frequency is shown in Fig. 3.2.

It is seen that as the current is raised at constant pressure, the

frequency range of instability is increased, and the most unstable

frequency also increases.

Figure 3.3 shows the stabilizing effect of increasing the ion

temperature. The stabilization is caused by collisionless (Landau)

damping of the wave, which interacts with an increasing number of particles

in the tail of the ion distribution function as the ion temperature rises.

Note that Eq. (3.8) does not depend on Ti , and consequently does not

contain the ion Landau damping.

3.2. Experimental Results

3.2.1. Apparatus and steady-state diagnostics

The experiment is carried out using a continuously

pumped Pyrex tube, 5 cm I.D. and about 1 m long, the exact length of the

discharge depending on the position of the movable anode (see Fig. 3.4).

The plane cathode is an indirectly-heated oxide-coated cylinder, 2.5 cm

in diameter. It was found that the standard mixture containing carbonates

of alkali metals painted onto a nickel substrate performs much better,

and is much less susceptible to poisoning, than a commerical dispenser-

type cathode consisting of porous tungsten impregnated with barium oxide.

The helium gas is leaked in from the cathode end, next to the throttled

pumping station, consisting of an oil diffusion pump with a liquid

nitrogen trap. The base pressure of the system is about 10- 6 Torr.

Discharge current is varied from 0 - 10 A.

The pressure in the system is monitored by an ionization gauge and

a Pirani gauge at each end of the tube. A long shielded probe, enclosed

in glass, is inserted along the bottom of the tube, through a Wilson

seal at the anode flange, and is used to measure discharge characteristics
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FIG. 3.2. The solution k (w real) of Eq. (3.6)
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for pa = 0.25 Torr cm, T. = 0.1 eV and
1

various values of discharge current

in He.
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FIG. 3.3. The influence of ion temperature on

the normalized spatial growth rate

calculated from Eq. (3.6); pa = 0.25 Torr cm,

I = 1 A, w = w/Wpi in He.
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along the whole length of the system. It ends with a 3 mm long, 0.4 mm

diameter cylindrical tungsten tip, which is normally located on axis,

but may be used to sample all radial positions by rotating the probe

body. A radially movable probe is located at a fixed axial position

30 cm from the cathode, and can accommodate cylindrical, plane, or

double probe tips, used for the various types of measurements.

The discharge tube is cooled by water circulating through a jacket

surrounding the tube (not shown in Fig. 3.4). This is important for

the region around the cathode (the cathode absorbs about 70 W of heating

power) and for the whole tube when it runs at high currents (> 3A for

He and > 6A for Ar, since Ez is lower in Ar).

Certain low-frequency ( 1 MHz in He) noise with wavelength of the

order of the discharge length is excited near the cathode. This noise

obstructs the detection of the low-level ion acoustic instability (near

the instability boundary) under certain discharge conditions in He. It

may be suppressed by applying a local magnetic field of several tens of

gauss to the cathode region. Consequently, a magnetic field, generated

by a solenoid wound around the cathode region, was used during some

measurements of the instability boundary.

A cylindrical microwave cavity, 30 cm long and 23 cm in diameter,

operating in the TM mode,46 is used in conjunction with a swept
010

frequency generator for measuring mean electron density. The cavity

does not fit around the water jacket, and comparisons of microwave

cavity and Langmuir probe measurements can be made only when the water

jacket is removed and the cavity installed.

On the basis of the theory of Section 2, curves of n/n(0) were

calculated (see Fig. 3.5), where the mean density

n 2 r n(r) dr , (3.14)

0

is evaluated numerically in the course of integrating Eq. (2.15).

Langmuir probe data were analyzed by using the theory of Laframboise

for a cylindrical probe, including the correction due to finite XD with
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FIG. 3.5. The ratio of mean electron density to density

on axis, calculated from Eq. (3.14) and used for

comparing microwave and probe measurements.
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47

respect to probe radius. The density was determined from the ion

saturation current drawn by the probe, while electron temperature was

deduced from the slope of the electron collecting part of the character-

47,48
istic drawn to a semi-logarithmic scale.47,48 Plasma density data obtained

from microwave cavity measurements (n) and from probes on axis [n(O)]

agree within experimental error (typically 10 - 207%) when the correction

of Fig. 3.5 is employed. Electron temperature data obtained from probes

agree so closely with Fig. 2.3, that theoretical temperature data are

used in calculating the dispersion relation, Eq. (3.6).

The theory of Section 2 does not take into account the variations

of steady-state parameters with discharge current. This is a good

approximation for Te . However, since the ion acoustic instability is

especially sensitive to the exact value of vDe , Eq. (2.11) is not

sufficiently precise. Instead, a mean value of electron drift velocity

is obtained from

vDe = , (3.15)

and is found to increase slightly with current. This value is substituted

into Eq. (3.6) in order to compare the observed spectra with theoretical

predictions.

3.2.2. Observations of ion acoustic waves

The self-excited signals from the probes are displayed

on a spectrum analyzer, and it is noted that for a particular pressure

there is a certain value of discharge current above which the waves are

excited. For maximum detected signal,49 the detecting probe is biased

near electron saturation, when the sheath around the probe practically

disappears, and electron current fluctuations through a 100 Q biasing

resistor are monitored. It is noted that the instability is maximum on

axis, and decreases radially. When a plane detecting probe is used, the

signal maximizes sharply when the probe is oriented to face the cathode

at all radial positions. This implies that the waves are essentially

plane waves propagating in the direction from the cathode to the anode.
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Most of the observations were made in He. The computed theoretical

curves in Figs. 3.1 - 3.3 also refer to He. Some measurements made in

Ar will be described at the end of this section.

Measurements in He: Measurements of the phase difference between

the fixed radial probe and the moving axial probe indicate wavelengths

of the order of 1 mm in He, with phase velocity equal to the ion sound

speed, vs . Measurements are performed with a tunable phase-meter, and

indicate no radial phase shift. The measured phase velocity agrees with

the long wavelength limit of Fig. 3.1. Results of calculations for ion

acoustic wave propagation in cylindrical geometry by Woods
5 0 also predict

this low frequency limit. Together with the radial decrease of the wave,

this points to the possible presence of a finite transverse wavenumber

at low frequencies.

The experimental frequency spectra are drawn on a logarithmic scale

in order to make all of the spectra fit on a single diagram, Fig. 3.6.

Figure 3.2 was calculated for the dc discharge parameters measured when

Fig. 3.6 was taken, so that direct comparison of the two is intended.

The ion temperature was taken to be 0.1 eV (see Fig. 3.3), which is

about 4 T n , in order to obtain best agreement with Fig. 3.6. This is

consistent with the results of Section 2 [see Fig. 2.6(e)], as well as

with the studies of the dependence of the stability boundary, Im[D] = 0,
35

on the ratio T /T i in the collisionless approximation.

In order to compare the shapes of the observed and the calculated

spectra, the curves of Fig. 3.2 are displayed on a logarithmic scale,

for kr D  0.005, in Fig. 3.7. The curves are also displaced vertically

by 10 dB, to conform to those of Fig. 3.6.

It was also noted that increasing the pressure had a stabilizing

effect on the instability, the upper limit being set by the appearance
14

of striations, at about 200 mTorr in He. The lower pressure limit

was set by the discharge being extinguished at about 20 mTorr, with

strong cathode-generated noise just above that. Clearly defined

instability, as in Fig. 3.6, appears between about 70 and 150 mTorr.

Figure 3.6 shows that, as the current is increased, the observed

instability spectra become broader, and the maxima increase in frequency.

This agrees with the result of linear theory, which predicts maximum
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FIG. 3.6. Experimental frequency spectra for various discharge
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for each curve; pa = 0.25 Torr cm in He.
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of the ordinate refer to the I = 3 A curve.
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spatial growth when w = pi/3 2 40 Similar trends are observed for

decrease of pressure. Very low pressure (< 70 mTorr in He) or very high

current (,5A at 0.1 Torr) cause the observed spectra to spread out, and

no well-defined upper and lower cut-off frequencies are observed. The

destabilizing effect of the electron drift becomes so large that one

should expect an increasing departure between the saturated spectrum

and the linear growth rate. A discussion of nonlinear effects is

presented in Section 3.4.

The observed amplitude of current fluctuations through the probe

biasing resistor is about 0.1 4A, which corresponds to a few millivolts

of potential fluctuations in the plasma, when the probe impedance is

taken into account ( 30 kQ). The ratio of fluctuating to steady-state

electron probe current ranges from 0.01 - 0.1% in He.

The low-frequency instability in Fig. 3.6 is the cathode-generated

noise. It has long wavelength compared to the tube length, and is

affected by the application of a magnetic field of a few tens of gauss

to the cathode region,51 as pointed out in Section 3.2.1.

Measurements in Ar: Data in argon were taken in the pressure range

of 1 - 10 mTorr. The results follow qualitatively those for He,

except that the detected signal level is higher in Ar (the ratio of

fluctuating to steady electron probe current is typically 0.1 to 1%).

This may be related to a smaller value of collisional damping, evidenced

by the lower value of vi in Ar than in He, for the typical pressure

ranges of operation (see Table 2.1).

Figure 3.8 shows frequency spectra detected in Ar. The spectra

closely resemble those in Fig. 3.6, except that the maxima are located

at lower frequencies than in He. This is because WDi is lower in Ar,

due to the heavier ions, and there is also somewhat lower n under the

conditions shown.

The considerable spreading of the spectra at 4 and 8 A in Ar is

similar to the spreading of the 3 A curve in He. It is observed that

the instability spectra at high currents (see Figs. 3.6 and 3.8) saturate

in amplitude, so that further increase of current causes broadening of

the instability, and, in some cases, breaking up of the main peak into
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two peaks. Thus, a mechanism exists which limits the amplitude of the

wave, and it would be desirable to include it in the theory. This topic

is discussed in Section 3.4.

3.3. Discussion of Experiment and Theory

The experimental results of Section 3.2 reproduce most of the

data reported in Ref. 40 for He. In addition, measurements in Ar show

the presence of the ion acoustic instability with qualitatively similar

features to those measured in He. The relatively higher amplitude of

the instability in Ar means that Ar may be more suitable than He for

studying plasma heating due to the presence of ion acoustic instability.

The theory in Section 3.1 has shown that k(w real) solutions

describe properly the linear regime expressed by the dispersion relation

formulated in Refs. 37, 38 and 40. Solution by numerical methods of the

full dispersion relation, Eq. (3.6), has enabled the calculation of

k (W real) and ki(W real) to be made in the laboratory frame, which

can be directly related to the observed spectra. Furthermore, by

comparing the measured with the calculated spectra, it is concluded that

ion Landau damping is important for typical positive column conditions,

and that the ion temperature must be considerably higher than the neutral

temperature for satisfactory agreement of theory and experiment.

Comparison of Figs. 3.6 and 3.7 shows that the positions of the

maxima and the high cut-off frequencies are predicted by the theory.

The agreement of theory and experiment at the high-frequency cut-off is

a significant demonstration of the important role of ion Landau damping,

because this type of collisionless damping is the dominant mechanism of

wave energy loss at high frequencies (near Wpi). The relatively poorer

agreement at the low-frequency cut-off signifies that the collisional

damping, which is the dominant loss mechanism at low frequencies, is not

sufficient to account for the observed large damping at these frequencies.

As noted in Section 3.2.2., the ion acoustic wave is observed to

propagate axially with a wavelength typically much smaller than the

transverse dimensions of the discharge. It appears that the one-

dimensional model of the linear theory, Section 3.1., should be a good

approximation for describing the instability boundary. However, the
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lack of success of the theory in predicting the low-frequency cut-off

may indicate that there is an additional loss mechanism at low frequencies.

This may result from the finite transverse dimensions of the discharge:

as noted by Yamada,40 the loss of particles to the wall represents an

effective loss of energy, which is not contained in the model of an

infinite plasma. Additionally, there may be effects due to finite trans-

verse wavelength, as well as damping due to ion streaming and velocity

spread in the radial direction, shown in Fig. 2.6(e). However, an

extension of the theory of Section 3.1 to include the effects of finite

transverse dimensions and also plasma inhomogeneity in the radial

direction, would be very difficult.

In concluding this section, it is noted that many of the observed

features in the linear regime of an ion acoustic wave on a positive

column can be explained in terms of convective instability; it is driven

by the inverse Landau effect due to the deviation of the electron velo-

city distribution from a local Maxwellian in the presence of an electric

field. The observed spectra correlate well with calculated spatial

growth rates; the destabilizing effect of electron drift, and the

stabilizing effect of ion Landau damping, are clearly demonstrated for

a positive column whose steady-steady characteristics are consistent

with the results of Section 2.

3.4. Discussion of Nonlinear Effects

As noted in Section 1, nonlinear effects lead to saturation

of linear instabilities at a level which may be so high with respect to

the thermal level as to affect the steady-state characteristics of the

plasma. Two basic types of nonlinear behavior appear, depending on the

spectrum of wavelengths of the linear instability as compared to dimen-

sions of the experimental system. In the case of a discrete spectrum,

when one or a few low order eigenmodes are present, nonlinear saturation

leads to single large amplitude waves. This is the case of macroscopic

instabilities of the positive column in a magnetic field,4, 3 4 and also

the flute instabilities discussed in Sections 4 and 5. These instabilities

are often responsible for the enhanced diffusion of charged particles

across magnetic field lines (Section 4.2.3.).
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The second type of nonlinearly saturated spectrum appears when the

linear instability has a continuous spectrum of high order (short wave-

length) modes. The saturated spectrum in this case is said to be turbu-

lent, and the resistance of the plasma may be enhanced (anomalous

resistivity) due to collisions of electrons with the random potential

fluctuations in the continuous spectrum of ion waves. This can lead to

turbulent heating by the current-driven ion acoustic instability.

The physical situations and the corresponding mathematical descrip-

tions are very different in the two cases. The first case involves the

saturation of a single mode and possibly the interaction and competition

among a few discrete modes. In the second case, there is coupling

between the different parts of the spectrum,and energy flow through the

spectrum; a major part of theory is to calculate the spectrum dependence

on W and k by using the random phase approximation.

The turbulent state of the current-driven ion acoustic instability
52-55

has been the subject of several different theoretical descriptions,

depending on which basic nonlinear mechanism is assumed to lead to

saturation. Various wave-particle and wave-wave interaction mechanisms

have been proposed and the resulting turbulent spectra and saturated

amplitudes have been calculated. However, the theoretical models often

do not have much resemblance to the experimental situation. For example,

they typically consider one-dimensional and collisionless plasmas,

periodic boundary conditions, and the initial value problem, where

either a drifting Maxwellian is assumed to exist at t = 0 or a voltage

or electric field is applied at t = 0 , and the time evolution of the

instability is followed. Since the experiment is typically much more

complicated than such theoretical models, it is not surprising that

there is still no general consensus about the appropriate theory for a

given experiment, or a satisfactory experimental confirmation of any

theory. The question of which nonlinear effects are dominant and which

are negligible for a given experiment is still open, and more experimental

data, in conjunction with realistic theoretical models, are needed to

answer it.
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Kadomtsev,5 2 Sagdeev and Galeev,5 3 and Davidson5 4 give comprehensive

discussions of nonlinear plasma theory, with ion acoustic turbulence as

a particular case. Plasma heating by ion acoustic turbulence is also

reviewed as a special case of the general subject of turbulent heating

by Self.55 We present here a brief survey of recent papers, not covered

in Self's review, dealing with the nonlinear state of ion acoustic

instability.

3.4.1. Theory

The first description of the nonlinear state of the

ion acoustic instability is based on the nonlinear kinetic equations in

the approximation of weak turbulence (quasilinear theory), as discussed

by Kadomtsev.52 The saturation is due to nonlinear Landau damping on

the ions, and the saturated spectrum of potential fluctuations is found

to vary as W , k The energy flows from high to low values of W

and k , where it is dissipated by collisions.

The quasilinear approach has also been used to calculate the

additional influence of effective electron collisions with ion waves,

resulting in increased effective collision frequency and in anomalous

resistivity.53 Numerous other theories along similar lines have been

developed, and are discussed in the review by Self.5 5

It has been found that the nonlinear Landau damping on ions is too

weak a mechanism, so that the level of turbulence predicted by quasi-

linear theory is too high.5 5 Consequently, other mechanisms which may

lead to saturation have been studied recently, especially a variety of

models of strong wave-particle interaction.

Rudakov and Tsytovich 5 6 generalize the weak turbulence, quasilinear

theory of Kadomtsev 52 to include the effects of perturbation of particle

orbits by the turbulent fields. For the special case of ion acoustic

turbulence, the authors demonstrate that the quasilinear interaction is

always more important than the strong interaction of the turbulent wave

with electrons.

It was shown in Ref. 57 that electron trapping can also be responsible

for saturating the ion acoustic instability. When the amplitude of the

ion acoustic wave becomes large enough, electrons are trapped in potential
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troughs of the wave. The effect becomes important when the bounce

frequency exceeds the wave frequency and the electron collision

frequency. The frequency spectrum in the saturated state is shown to

vary as w-7/3 , k3/3

Reference 58 considers the effect of ion trapping, i.e., the

modification of ion orbits by finite amplitude waves. It is shown that

the effect leads to saturation of the ion wave, and the level of saturation,

but not the detailed dependence on w and k , is calculated. The cal-

culated value is shown to be of the same order of magnitude as the

experimental value from Ref. 59.

Thus, even though ion and electron trapping effects can by themselves

lead to saturation of the ion acoustic wave, it follows from the results

of Ref. 56 that the quasilinear interaction is expected to be more

important than strong wave-particle interaction with electrons. It

should be emphasized that a proper theoretical treatment must consider

the relative importance of all the possible nonlinear mechanisms for a

particular experimental situation, and base the final model on the

combination of those mechanisms which are shown to be important.

3.4.2. Experiments

There is considerable interest in the study of ion

acoustic turbulence in connection with turbulent heating of plasmas for

fusion.5 5 For example, a recent pulsed experiment in toroidal geometry5 9

-I
reports measuring W dependence of the ion acoustic turbulent spectrum,

as predicted by quasi-linear theory. However, the paper emphasizes that

the experimental situation is more complex than the model of Ref. 52,

and that additional effects, such as finite correlation time of the

fluctuations, must be considered.

Smaller scale experiments are also very difficult to explain in

terms of a particular theoretical model. In the case of a positive column

experiment similar to Section 3.1., Yamada 4 0 concludes that the observed

nonlinear spectra are better explained by theory based on electron

trapping than on ion trapping. The points of comparison include

the slope of the frequency dependence of the observed spectra, and the

saturated level of the instability, which is shown to correspond better

to that predicted by the electron trapping than the ion trapping model.
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An important obstacle to understanding the turbulent state in

experiments is the lack of accurate diagnostics,55 especially for studying

the k spectrum. In case of probes, measurements of short wavelengths

are limited by finite dimensions of the probe and of the accompanying

sheath. A promising method may be the use of laser scattering from

turbulent waves, which has been used for measuring small wavelengths

(2 to 0.75 mm) of cyclotron harmonic waves.60

Another small scale experiment6 1 in a diffusion plasma reports

measurements of the lifetime of density fluctuations of ion acoustic

waves,which is a measure of the auto-correlation time. The evolution of

the instability from the linearly unstable regime into the nonlinearly

saturated (turbulent) rdgime is followed as the electron drift velocity

is increased by increasing the potential of a grid immersed in the plasma.

The lifetime is found to depend strongly on boundary conditions in the

linear regime, but becomes constant and independent of electron drift

velocity and boundary conditions in the turbulent state.

Finally, Ref. 62 presents evidence from laboratory and computer

experiments that there exists a class of wave-particle processes which

can lead to turbulent final states of ion acoustic waves, and which

occur in time scales intermediate between those of hydrodynamic and

trapping processes.

Thus, the theory and observations of the nonlinear turbulent state

of the ion acoustic instability are still far apart. Theoretical models

which can lead to saturation have not been developed to the point where

it is possible to judge the relative importance of several possible

mechanisms for a given experimental situation. In a similar way,

experimental observations still cannot provide firm evidence for the

understanding of the basic processes which lead to and govern the

turbulent state. Refined experimental diagnostics have to be developed

in order to yield detailed data, which are needed for a complete

description of the turbulent state of the ion acoustic instability.

It is intended that these shall be developed at Stanford in future

studies arising from our work.
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4. HOLLOW CATHODE ARC DISCHARGE: REVIEW OF LITERATURE

We turn now to a plasma source which is very different from the

positive column: the gas-fed, magnetically-confined hollow cathode arc

discharge (HCD). As we have seen in Sections 2 and 3, the important

processes for determining the characteristics of the positive column

are the interactions of charged particles with neutrals; Coulomb

collisions are neglected. In contrast, in the HCD the presence of

neutrals is only important in the cathode region, and elsewhere Coulomb-

type interactions are of primary importance. Although electron tempera-

tures in both sources are typically several eV, comparison of typical

values of the degrees of ionization (more than 10% in the HCD compared

with 1% or less in the positive column) and electron number densities
13 -3 10 -3

(10 cm compared with 10 cm ) demonstrate the basic differences

which make it necessary to use radically different theoretical models

in describing the HCD and the positive column.

As an introduction to Section 5, where our own work on the HCD will

be reported, this section presents a review of observations made else-

where of steady-state and time-dependent quantities in HCD discharges.

Some theoretical work is also discussed, with an emphasis on applications

to experimental results.

While a general review of the HCD would properly include spectro-
9

scopic light sources with low discharge currents, we shall consider
63

only intense HCD arcs of the type described by Lidsky et al. These

arcs were developed originally at Oak Ridge for dissociating molecular
8

hydrogen, and have come into wide use since as convenient plasma
64,65 66,67

sources for ion lasers, low-frequency wave propagation studies,

68
and studies of turbulent heating.

Section 4.1. reports on measurements of steady-state quantities,

and on the diagnostic methods used in studying the HCD; Section 4.2.

considers the measurements of time-dependent quantities; and Section 4.3.

closes the review with a brief summary.
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4.1. Steady-State Parameters and Diagnostics

4.1.1. Steady-state parameters

The hollow cathode discharge is formed at a neutral

pressure of several Torr inside a hollow cylinder made from a refractory

material (W, Ta, C). The plasma then diffuses out into a highly evacuated

vacuum chamber, which is made of glass or metal, and where the pressure

is typically less than 10-3 Torr.63 The charged particles are confined

by the magnetic field and form a bright core near the axis, with a tenuous

external plasma surrounding the core (see Fig. 4.1). The steady-state

characteristics of the external plasma depend strongly on the boundary

conditions at the wall, e.g., whether the chamber is made of glass or

metal. This will be discussed in more detail in Sections 4.2.1. and 5.1.4.

The combination of a relatively high pressure arc diffusing into a

region of low neutral pressure results in the formation of a highly
14 -3

ionized, high density (up to 10 cm ) core of plasma with T > T.
e 1

The radial profile of the bright core near axis is determined by the

balance between the radial diffusion of plasma particles across the

magnetic field lines and the geometric limit of the cathode diameter.

Figure 4.1 shows the experimental configuration of an early HCD

apparatus. 63,69 The cathode is a tantalum cylinder about 10 cm long

and several mm in diameter. Almost all reported experiments are in

argon, and the background pressure in the vacuum chamber is between
-4 -3

10 and 10 Torr. The anode does not have any significant effect on

the plasma formation; it is merely a collecting electrode for the

plasma.

The HCD is started by inducing an rf discharge, which causes heating

of the cathode by ion bombardment.63 Once the cathode reaches a tempera-

ture of about 2500 K, the discharge is self-sustained, and a bright

region several cathode tube diameters in length forms inside the cathode,

where the discharge is generated. Measurements of the temperature of

this active zone suggest that thermionic emission alone cannot yield

the observed high values of emission current densities. This has led to

the conclusion that secondary, photoelectric, thermionic and field
64

emissions may all play a significant role. Theoretical consideration
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of heat transfer from the hot metal wall of the cathode to the gas

flowing through it show that the active zone is established at an optimum
70

value of pressure, p 4 Torr. Furthermore, a calculation of the

balance between the plasma formation by collisions of electrons with

metastable atoms and the loss by volume recombination, shows the existence

of a local overpressure in the active zone, bounded by the formation of
71

a sheath.

In considering the origin of the bright core, there are two limiting

cases. Figure 4.1 illustrates the first, in which there is significant

axial potential drop in the core, so that the plasma is generated

by ionization processes in the volume, driven by Ez and I . This is

similar to the positive column (Section 2), where the hollow cathode

acts as a cathode for the bright core. The bright light emitted by the

core indicates that there are significant excitation and probably

ionization processes taking place in the core.

The second case is illustrated in Fig. 4.2, in the case when the

baffle and the plate anode are at the same potential. The baffle acts

as an extracting electrode for the plasma diffusing out from the hollow

cathode through the baffle, and following the magnetic field lines

into the experimental region. There is no external power input to the

column in the experimental region, so that the plasma in the experimental

region is diffusion generated. In practice, a combination of the two

cases exists in every experiment, depending on the exact discharge

conditions.

The basic HCD configuration described above has undergone several

improvements in recent years. In the case of low-pressure, high-current

operation, the single large cathode tube may be replaced by an array

of thin tubes. This lasts longer, operates at lower temperature, and
72

has a lower cathode potential drop than a single tube. The lifetime
64

of the hollow cathode (10-30 h) may be further extended (up to 1000 h )

by using low work-function tubes made of porous tungsten impregnated

with oxides of alkali metals,6 5 ,7 3  or of thoriated tungsten, which

operate at about 1200 K. Also, the rf starting method, which is very

sensitive to pressure, cathode alignment, and gas flow rate at the time
74

that ignition is attempted, may be replaced by a magnetron-type
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FIG. 4.2. Schematic of a HCD used for wave experiments

(from References 76 and 77).



subsidiary discharge, which heats up the cathode sufficiently for the
75

are to start.

In this review of the HCD, we are interested primarily in the

characteristics of the external plasma, formed by the diffusion of plasma

particles from the bright core across the magnetic field (see Fig. 4.1).

The vacuum chamber of the experiments reviewed is typically long with

respect to the transverse dimension. A static axial magnetic field

is applied. Often, limiting electrodes are provided, with the aim

of achieving a large drop of background gas pressure between the source

and the experimental region (see Fig. 4.2). In this way, a high degree

of ionization is obtained in the experimental region. Figure 4.2 shows

such a plasma source, developed by Woo and Rose.76,77 It is a typical

example of a highly-ionized (up to 99%) discharge, suitable for studies

of waves on plasmas. The additional anode gas feed, indicated in

Fig. 4.2, affects the observed instability spectra in some experiments 78

(see Section 4.2.).

The HCD operates in the approximate current range from 5-300 A,

with a voltage drop of about 50 - 150 V, depending on the arc length,

for Ta cathode and Ar gas, and about 30% less for oxide-impreganted

cathodes. Most of the measurements reported have been made at a fixed

current of about 20 A.77,79 Homogeneous and inhomogeneous (such as

mirror) magnetic field configurations have been used. It is found

that the presence of an axial magnetic field is not essential for arc
63

operation in the case of a refractory cathode, while a minimum

value of about 300 G is required for continuous operation of a discharge

with an oxide-impregnated cathode.65

While the flow of gas is essential to the mechanism of arc generation

for the class of HCD discharges we are discussing here, Jennings et al.65

report that an arc can be sustained even when the gas flow is reduced

to zero. In that case, however, it is very likely that the discharge

becomes a cold cathode arc, rather than a true HCD.
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4.1.2. Measurements of plasma density and electron

temperature by probes

The Langmuir probe has been the most popular diagnostic

tool for investigating the properties of the HCD plasma. In the absence

of magnetic field effects, the ion saturation current, Is , drawn by a

spherical probe of area S and radius much larger than the Debye length
48

is

T 1/2

I neS ei (4.1)s 2 m.

Once the electron temperature is determined from the slope of the

semi-logarithmic plot of the electron collecting part of the probe
48

current (Fig. 4.3), Eq. (4.1) yields the ion density. In the presence

of a static magnetic field the probe characteristic changes (Fig. 4.3),

because the charged particles gyrate about the field lines. At moderate

magnetic fields, when the ion Larmor radius is larger than the probe

dimension, the ion saturation current is still predicted accurately

by Eq. (4.1). Furthermore, comparisons with measurements by several

other methods indicate that accurate electron temperature data may still

be obtained from the logarithmic slope of the transition from the ion

saturation to the electron collecting part of the characteristic, at

magnetic fields when Eq. (4.1) holds.80

In practice, a spherical probe of 1 mm diameter usually satisfies

the conditions of being smaller than the ion Larmor radius and larger

than the Debye length, and the resulting plots are easily interpreted

on the basis of the above simple theory.

There are certain difficulties associated with probe measurements

in the bright core. The heat of the discharge melts the insulation of

the probes, so that they have to be constructed with refractory

insulators, such as alumina or boron nitride,for measurements near the
81

core. Also, a hot probe emits electrons which affect the probe

characteristic.82 Consequently, the reported measurements mostly deal

with the external plasma.

The results of measurements of the radial profiles of electron

temperature and plasma density in a source such as the one sketched
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in Fig. 4.2 show that there is a high-density (10 - 10 cm ) plasma

with electron temperature of several eV on axis, surrounded by a layer

of lower density (external) plasma. The density falls off radially much

more rapidly than the electron temperature. The exact values on axis
77

depend on the pressure, current and magnetic field.

4.1.3. Other measurements by probes

The plasma space potential in the absence of magnetic

field is relatively easily determined as the potential of the probe

characteristic at which electron saturation current is drawn (s in
48

Fig. 4.3). However, this part of the probe characteristic is strongly

affected by the presence of even very weak magnetic fields, so that some

other method must be used.

The floating potential, of , which is easily determined as that

potential at which the probe draws no current, may be related to the
48

space potential by

Os = Of + cTe/e , (4.2)

where c is a coefficient which depends on the effective probe area

for electron collection. The second term in Eq. (4.2) introduces a

correction due to the presence of the sheath, and varies radially because

T is a function of position. In the presence of magnetic field, theree

is no theoretical analysis available for calculating c . A value of

c = 4 is often assigned,48,81 with the justification that it is an
81

average of various values calculated for argon without magnetic field.

By differentiating the space potential profile, given by Eq. (4.2), the

radial electric field profile is obtained, with accuracy which Hudis
81

and Lidsky estimate to be only within a factor of three. Thus, the

radial electric field measurements leave much to be desired.

Measurements on typical HCD external plasmas have indicated that

of has a pronounced minimum on axis and increases radially, while T e

decreases monotonically with radius. When Eq. (4.2) is applied, a

negative radial electric field is obtained near the axis, which is

inverted compared to the unmagnetized positive column, Fig. 2.6(b).
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Thus, the plasma on axis is confined by magnetic field effects on the

electrons, and by negative space-charge field effects on the ions.

The potential profile at large radii is governed by the conditions at

the wall, as will be shown and discussed in Section 5.1.3.

Attempts to measure space potential with emitting probes have been

reported,67 but they are subject to serious limitations in the presence

of magnetic field, since the part of the probe characteristic near
82,83 69

electron saturation is used for determining s . Morse has

reported measuring positive radial electric field by this method in a

rather short arc. It is not clear whether the high end losses to be

expected in this case strongly modified the potential distribution, or

whether it was the dubious measuring method which was responsible for

the difference in sign of the electric field with respect to the results

of other work.73,77,79

Directional Langmuir probe measurements have also been reported.

Such probes effectively measure the variation of ion current drawn as

the probe orientation is varied, and the corresponding theory gives the

ion drift velocity in terms of the difference of ion currents drawn in

two opposite directions. The azimuthal velocity of ions rotating around

79,81
the axis in the external plasma has been measured in this way. The

weak point of the method is that the interpretation of measurements is

based on a theoretical model which makes numerous simplifying assumptions

about the ion motion (e.g., that the ions are monoenergetic and with a

uniform drift velocity) which are difficult to justify for the HCD.

4.1.4. Spectroscopic diagnostics

Since the light output of the external plasma is very

low, only the results of spectroscopic measurements of charged particle

temperatures at or near the bright core have been reported. By

measuring the Doppler broadening of certain ion lines, the ion tempera-

ture can be deduced. Conventional line broadening measurements with

prism or grating spectrometers are limited by instrumental broadening.

If taken literally, they provide excessive values (T.i  30 eV in Ref.78).

The application of Fabry-Perot interferometer techniques, together

with careful consideration of Zeeman splitting in the presence of the
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external magnetic field, provide the best data currently available.

The values of ion temperature thus obtained increase with magnetic field

and discharge current, and range from 0.4 eV8 4 to 2.5 eV. 8 5 No detailed

radial ion temperature profiles have been reported in the literature,

perhaps partly because of the difficulties of isoloating light from a

small region, and separating the broadenings due to different ion drifts

along the line of sight.

Electron temperature may be determined by measuring relative
85-87

intensities of two spectral lines. The results of the values on

axis are reported, and agree with probe data extrapolated into the core.

Spectroscopic methods have also been used to measure the velocity

of rotation of ions and neutrals, by measuring the Doppler shift of a

corresponding spectral line.85,88 Radial variation of the ion azimuthal

velocity (, 105 cm/sec) up to about 3 cm from the axis is determined in

Refs. 85 and 88. Reference 85 also determines the azimuthal velocity

of neutrals, which are dragged by the rotating ions, to be about one-fifth

of the ion velocity, up to about 2 cm from the axis.

4.1.5. Other diagnostic methods

Microwave methods have been used by several workers

to check the values of electron density in the core.
7 7 ,8 4 ,8 5 ,8 8

Reported results refer to a single measurement of phase shift or of

transmitted power of a microwave beam passing through the plasma, as a

check of the measured mean or cut-off electron density against probe

data.

Incoherent Thompson scattering of ruby laser light has also been

used for measuring electron density and temperature.89,90 A salient

advantage of the method is that the electron temperatures parallel and

perpendicular to the magnetic field can be measured separately. While

some early measurements yielded results which are up to 50% lower than
89

probe data, a recent paper reports improved agreement of some
90

preliminary results for T and n . The data refer to the plasmae e
in the bright core, and further refinement of the experiment is expected

to extend the application of the method to the external plasma.9 0
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A metal pendulum suspended in the external plasma and deflected by

the rotating plasma particles is the basis of another technique for

measuring the azimuthal velocity of ions.79,88 The deflection of the

pendulum is interpreted to be due entirely to the ions. The values of

the ion azimuthal velocity thus obtained are about 30% higher than the

spectroscopically measured ion rotation velocity in the transition region
88

between the core and the external plasma. The method is subject to

doubt because the presence of a metal surface inside the plasma may

cause significant perturbation in the discharge conditions. Additionally,

the pendulum is deflected by the combined impulses from all plasma

particles, while the interpretation considers only the ions.

The data on the ion azimuthal velocity taken by the three different

methods (directional probe, Doppler shift of ion lines and pendulum)

indicate an order of magnitude agreement ( 105 m/sec). This is good

agreement in view of the fact that the data were taken on three different

experiments. It indicates that the ion azimuthal drift is the important

effect in plasma rotation, as assumed in the theoretical interpretations

of measurements by the three methods.

4.1.6. Discussion of steady-state parameters of the HCD

The conditions under which the arc is formed inside

the hollow cathode have been studied thoroughly for the combination of
70,71

a tantalum cathode and argon. A similar analysis remains to be

done for an oxide-impregnated cathode, which will clarify the observed

differences between the two types (Section 4.1.1.).

The radial profiles of plasma density and electron temperature in

the HCD are well-documented. Reliable data on the radial profile of

the ion temperature and accurate space potential data in the external

plasma are lacking. It would be desirable to develop a theoretical

model of the HCD which would provide a complete description of the

spatial variations of all physical quantities, as is possible for the

positive column (Chapter 2). However, as noted in the Appendix, the

presence of the strong magnetic field emphasizes the effects of end

losses; the axial motions of charged particles are nearly collisionless,

while their radial motions are effectively collision-dominated, due to
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the confining effect of the magnetic field. Thus, even though the

discharge may be physically very long with respect to the radial

dimensions, it must be treated as a finite cylinder. This is shown for
6

the positive column in the Appendix. The implications of the strong

magnetic field for the HCD depend on whether the walls are insulating or

metal. In the first case, the radial diffusion of charged particles

is ambipolar, since electron and ion fluxes must be equal at the wall.
91

In the second case, Simon diffusion is important: the electrons flow

freely to the axial boundary along the magnetic field lines, while the

ions flow radially across the magnetic field to the conducting wall,

and then to the axial boundary to recombine with electrons.

Since the exact geometric configurations of the various HCD

experiments differ considerably, and the various biased baffles cause

further differences in the number density distributions of both the

neutral and charged particles, it is practically impossible to develop

a single theoretical model which would be capable of predicting the

steady state of the various experimental systems. Instead, it is

necessary to develop a specialized model for each particular system, to

take into account the important end effects of that experiment.

Further complicating factors encountered in describing the external

plasma theoretically include the inapplicability of the isothermal

approximations for electrons and ions, the importance of including

Coulomb collisions and radiation processes in the model, and the presence

of instabilities which may be so strong as to affect the steady state.

Since all of these effects are difficult to model, it is not likely

that a realistic model of a HCD will be developed soon. Further

refinement of the diagnostic methods, especially for deducing the spatial

variations of ion temperature and space potential, are needed before a

thorough understanding of the HCD can be reached.
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4.2. Measurements of Low-Frequency Instabilities

It is seen from the measurements of Section 4.1. that the

HCD is a highly ionized plasma with magnetic field and current in the

axial direction, and electric field and charged particle density and

temperature inhomogeneities in the radial direction. Consequently,

there are several kinds of charged particle drifts present which may

lead to the excitation of instabilities.

First, there is drift in the axial direction due to the axial

current. Then, the combined effects of E and B cause electrons
r z

and ions to drift azimuthally with velocity Er/Bz (Hall drift).

In the presence of collisions with neutrals, charge separation results

between electrons and ions from their different collision rates with

neutrals, and the charged particles drift azimuthally at different

velocities (neutral drag effect). Finally, an equivalent drift of

electrons relative to ions appears in fluid equations due to the electron

density (or pressure) gradient normal to B (diamagnetic drift).3 4
z

Each one of these drifts represents a source of free energy in plasma

which can lead to the excitation of instabilities. These instabilities

are classified and named according to which effect plays the dominant

role in exciting them. A discussion of the various kinds of instabilities

which have been observed in general is outside the scope of this work.

Such a thorough treatment, including a variety of microscopic and macro-

scopic destabilizing effects additional to the drifts described above,

is to be found in the review by Lehnert.
7

We concentrate here on the instabilities observed in the HCD, for

which it is sufficient to consider the macroscopic destabilizing drifts

listed above. Fluid treatments of low-frequency instabilities in

magnetoplasmas have recently been given by Self3 4 for the weakly ionized

case, and by Rognlienl 0 for fully ionized plasma, and they include

discussions of most of the instability types relevant to the HCD.

The HCD is especially rich in self-excited oscillations in the

frequency range up to 100 kHz (the ion cyclotron frequency is 50 kHz

for argon at about 1.3 kG), with practically no self-excited noise

above 1 MHz. Langmuir probes at floating potential are often used to

77



detect potential fluctuations, while probes biased into ion saturation

(usually 50 V negative with respect to the floating potential) yield

density fluctuation data. Probes are easy to use, they offer spatial

resolution, and they do not perturb the plasma appreciably, since the

sheaths covering them are very thin under typical experimental conditions.

Furthermore, there is a great variety of instruments for measuring

amplitude and phase of signals at these low frequencies, so that the

spatial characteristics of the instabilities may be investigated easily

(see Section 5.1).

4.2.1. Measurements of self-excited waves

A summary of the results of observations of low-

frequency self-excited waves in HCD experiments is presented in Table 4.1.

Measurements are performed at about 20 A discharge current, except

Ref. 78, which reports data measured at 150 A.

Morse observed rotating flutes (no axial dependence) in a short

HCD (see Fig. 4.1) by time-resolved measurements of density fluctuations
69

using a Langmuir probe. He detected an m = -1 mode at about 2 kHz,

where m is the azimuthal mode number such that negative m denotes

the left-hand direction with respect to the magnetic field (see Fig. 4.4).

His theory invoked the neutral drag driving mechanism for the flutes,92

and the calculated eigenfunctions in slab geometry agreed with

the observed frequency, but not with the observed shape of the

flutes. The theory uses electric field values as determined from

the electron saturation of Langmuir probe characteristic, which

is a dubious method in the presence of magnetic field (see

Section 4.1.3.).

Chung and Rose7 7 report observing two instabilities, at 8 and 50 kHz.

The higher frequency mode 93 is localized in the bright core and propagates

radially. Its frequency varies linearly with magnetic field, a'nd does

not vary with the discharge length. It is identified as the electro-

static ion cyclotron instability, on the basis of a model of an axial

current-driven cyclotron wave in a homogeneous, collisionless plasma.

The wave is predicted to have the highest growth rate at a frequency

of 1.2 Wci , where Wci is the ion cyclotron frequency, which agrees

with the experiment.
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TABLE 4.1

Summary of low-frequency instabilities observed in HCD

(L = arc length; kz = axial wavenumber)

Frequency

Reference [kHz] m k Radial location: Type of instability
Z

Morse (69) 2 -1 0 near axis neutral drag

Chung and Rose 50 propagates core; ion cyclotron;
(77,93,94) radially

8 1 ? external plasma, at drift

large 7n

Kretschmer 14 0 rr/2L external plasma slow Alfven;
et al. (78)

12 1 0 drift*

80 1

45 1,2 0 modified torsional
Alfvn

Gunshor 8 1 ? external plasma; drift;
et al. (73) 5 1 W/L external plasma ion acoustic

Aldridge and

Keen (79) 15 1 0 external plasma rotationally-

convected drift

Wheeler (95) 2 -1 0 near wall; centrifugal flute;

30 1 0 near axis centrifugal flute
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FIG. 4.4. The azimuthal directions with respect to the magnetic field:

left-hand (LH) and right-hand (RH).



The lower frequency mode9 4 propagates azimuthally with m = 1 and

occurs in the external plasma, in the region of large density gradient.

The mode is identified as a drift wave, described by a slab model with

density gradient normal to the magnetic field, Bz . The use of a local

approximation in the theory (k >> (1/n)(dn/dx), where k is the

wavenumber for propagation perpendicular to B), which implies that the

wave is localized in a space much smaller than the scale length for

density fall-off, is not experimentally justified. As discussed by

34
Self, a drift wave requires finite k in order to provide the

z

necessary phase shift between potential and density fluctuations via the

electron longitudinal motion. However, no data on kz are reported,

and no attempt to explain the radial profiles of fluctuations is

presented. The identification is based only on the agreement of

calculated and observed frequencies, which leaves it open to doubt.

Kretschmer et al.78 report observing a variety of modes in a high-

current experiment (see Table 4.1). They present measurements of the

frequency dependences of the various modes on the static magnetic field,

and base the identification of the modes listed in Table 4.1 on a quali-

tative agreement of the frequencies observed with predictions of several

models which may be applicable to their discharge. However, there is

little experimental justification presented for using these models;

their identifications must be viewed only as plausibility arguments

about the existence of the various waves in their discharge, rather

than convincing identifications.
73 77

Gunshor et al. observe the drift wave described by Chung and Rose,

and also an additional mode at about 5 kHz. The measured frequency of

the latter depends inversely on the length of the discharge, when it is

varied by about 3070, and the frequency for four noble gases is inversely
1/2

proportional to m . The mode varies azimuthally as m = 1 It is
i

identified as a standing ion acoustic wave in the z-direction on the

basis of the agreement of the observed frequency with that of a model of

an ion acoustic wave propagating at an angle to the magnetic field in a

collisionless plasma slab. The identification again must be viewed as

doubtful, because there is no instability analysis presented for the
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wave and no attempt to measure or relate to theory the radial profile

of the instability.

Aldridge and Keen7 9 report the measurements of the radial profiles

of potential fluctuations of an m = 1, kz = 0 instability. They find

agreement between the measured frequency in a wide range of magnetic

fields and that predicted from a model for an instability in a weakly

ionized plasma slab (in the local approximation). The wave is identified

as a rotationally convected drift wave on the basis of the frequency

agreement. The identification is open to doubt because a drift wave

must have k z 0 ; their theory for k = 0 actually represents az z
10 11

form of the neutral drag instability. Furthermore, their measure-

ments clearly indicate that the local approximation is inapplicable.

The authors state that the full calculation in cylindrical geometry is

required for a more complete theoretical model.

Wheeler observes two azimuthally propagating flutes:95 at large

radii, a 2 kHz, m = -1 instability exists in the region of positive

radial electric field, while a 30 kHz, m = 1 mode is localized close

to the axis, where the radial electric field is negative. The electric

field data are deduced from Langmuir probe theory,neglecting magnetic

field effects, so that they are open to doubt, as discussed in

Section 4.1.2. The two modes are identified as centrifugal flute modes

by comparison with a slab model, including an equivalent gravity to

account for centrifugal effects. The theory predicts the observed

frequencies and directions of propagation, the observed growth rates,

and assumes kz = 0 , as observed experimentally. It also predicts

that the energy density of centrifugal motion is peaked near the axis

and also near the wall, which agrees qualitatively with the observed

radial locations of the modes.

In concluding this section, we note that all of the above papers

report observing an azimuthally-propagating instability, and identify

it on the basis of the agreement of the observed frequency and direction

of propagation with a plasma slab model. The experiments are performed

in systems with glass (Refs. 79 and 73) or metal walls (Refs. 69, 77, 78

and 95), and the boundary conditions significantly affect the radial
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electric field profile (see also Section 5.1.). This is demonstrated

by the fact that the ions rotate around the axis in the left-hand

direction when the vacuum chamber is metal,88 and in the right-hand

direction when glass vacuum chamber is used.7 9 ,8 5 Thus, the various

experiments differ significantly from one another in the spatial distri-

butions of space potential and in the charged and neutral particle

density variations, as discussed in Section 4.2.1. Consequently, it

is difficult to judge whether or not the instabilities with similar

characteristics observed in different experiments are geometrically

modified versions of the same modes.

In order to decide whether the observed instabilities are in fact

one mode, altered by the particular geometry and discharge conditions,

it is necessary to provide a more complete identification than was

presented by the papers reviewed. The full problem in cylindrical

geometry should be solved, instead of using the localized slab model.

Measured steady-state characteristics of the discharge should be used

in calculating the eigenfunctions for the model, and a proper stability

analysis included. In this way, the measured profiles of amplitude and

phase of the instability can be checked against the computed eigen-

functions. This approach is used in the identification of two

modes observed in our HCD, to be presented in Section 5.

4.2.2. Radial diffusion of plasma

Classical diffusion occurs when plasma particles

diffuse across the magnetic field lines due to scattering by collisions.

In the presence of low-frequency instabilities ( << w ci), the diffusion

is enhanced above the classical value because of Elr/Bz particle

drifts, where Elr is the radial component of the fluctuating electric

field of the instability. The phenomenon is referred to as anomalous

or wave-enhanced diffusion, though it is not strictly a diffusion

process. Several authors have reported that the radial flux of plasma

particles increases when instabilities are excited.77,93,95,96
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Chung et al.7 7 '93 report an increase in the axial plasma density

and a decrease in the scale length of the radial density profile when
96

their ion cyclotron instability is quenched. Noon et al. show that
-i

their radial scale length varies as B when their "ion acoustic"

mode is suppressed, and increases to B-1/ 2  variation in the presence

of the wave; power input to the arc at constant current also increases

when the instability is excited. Finally, Wheeler also observes enhanced

radial transport of ions in the presence of the 2 kHz flute mode, which

is excited at large radii in his experiment95 (see Table 4.1).

Flannery and Brown modulate the current of their discharge at

400 Hz and at a low value of magnetic field, when no significant insta-

bilities are present.66 They follow the radial propagation of the

resulting diffusion wave by measuring the radial variations of phase

and amplitude of the density fluctuations. By comparing the results

with a theory for radial ion diffusion, including a provision for axial

end loss of particles, they conclude that the diffusion proceeds at a

classical rate, without evidence of anomalous diffusion.

Thus, the radial transport of plasma particles is governed by

collisional effects in the quiescent regime; the presence of low-

frequency instabilities causes an increase in their radial diffusion

rates.

4.2.3. Suppression and enhancement of low-frequency waves

It has been noted above that particular modes may

be strongly excited or damped by suitable choice of discharge conditions.

Woo and Rose determine that the self-excited instabilities are generated

in the high-pressure cathode region, where large gradients of potential and

neutral density and pressure exist.76 They separate the highly

collisional cathode region from the low pressure collisionless experi-

mental region by a baffle of such dimensions that a slightly collisional

discharge exists there (see Fig. 4.2). This effectively damps out the

self-excited instabilities.

A corresponding theory for a partially ionized, collisional plasma

slab shows that the difference between the electron and ion axial drifts

provides a destabilizing effect, and the baffle dimensions have to be
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chosen in such a way that W ci. v. , where v. is the ion-neutral

collision frequency, for the baffles to be effective for noise

97
suppression.

Feedback circuits have also been utilized for influencing the
95,98,99

excitation of a particular mode.95,98,99 By varying the gain and phase

of the feedback signal, it is shown that a drift instability at 5 kHz

may be completely suppressed or enhanced,98 and a corresponding nonlinear

theory explains the measured results. In a similar way, Wheeler

reports stabilization of the low frequency flute instability responsible

for enhanced radial diffusion.95

4.2.4. Experiments with externally-excited waves

In addition to the diffusion wave experiment of

Flannery and Brown66 described above, Keen and Aldridge also excite

externally a low-frequency drift wave by a system of electrodes in a

discharge in helium, which has a constant radial density scale length,

(1/n)(dn/dr).67 The electrodes enable selective excitation of m = 0,

± 1 modes, and the wave dispersion is measured in the range from 20

to 220 kHz. Reasonable agreement is found with a localized drift wave

dispersion relation based on a slab model, which includes the effects

of radial electric field and ion-neutral collisions.

4.3. Summary

The external discharge of the HCD represents a source of

high density, inhomogeneous and highly ionized plasma which is often

subject to a variety of low-frequency, self-excited instabilities.

These instabilities may be suppressed by varying the discharge parameters,

or by using external stabilization methods, so that a quiescent source

for studying waves on highly ionized plasmas at low Bz may be obtained.

A complete identification of these instabilities, including

prediction of spatial variations of amplitude and phase of potential

and density fluctuations, is hampered by lack of data on the spatial

variations of steady-state electric field and ion temperature (see

Section 4.1.6.), which have important roles in exciting the instabilities.

However, even with the data which are now available, it is possible to
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provide much more complete identifications of the observed modes than

are presented in the reviewed papers.

Section 5 presents such a complete identification of two centri-

fugal flute modes in our HCD experiment, using the approach outlined

at the end of Section 4.2.1.
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5. FLUTE INSTABILITIES OF A HOLLOW CATHODE ARC DISCHARGE

This section presents the experimental results obtained on our

HCD. Steady-state characteristics are determined, and two observed

instabilities are identified as centrifugal flute modes, driven by

EX 1/B2  drift in the presence of a radial electron density gradient.

The identification is based on comparison with eigenfunctions calculated

from a linear theory for a collisionless, cylindrical plasma column, which

was developed by Rognlien.10

Details of the experimental set-up, and the results of measurements

of steady-state and time-dependent quantities are given in Section 5.1.

Section 5.2. outlines the theory, which is compared with experimental

results in Section 5.3. The section closes with a brief discussion

in Section 5.4.

5.1. HCD Experiment

In the description of the experiment, special attention is

paid to experimental results which lead us to the theoretical model of

Section 5.2. In particular, the effects of the radial electric field

on excitation of the two instabilities are noted, and parameter

ranges are indicated where they are suppressed.

5.1.1. Apparatus and diagnostics

The HCD is enclosed in a cylindrical vacuum chamber

with Pyrex glass walls of 10 cm inside diameter. Figure 5.1(a) shows

schematically two metal wall sections, one a pumping port and the other

a diagnostic port. The arc is confined by an axial magnetic field,

homogeneous to ±2% over a length of 1 m, produced by ten coils. The

system is pumped by three 700 t!s diffusion pumps, and the pressure is

measured by an ionization gauge located at the diagnostic port.

The hollow cathode is a tungsten tube impregnated with barium oxide

(3.1 mm O.D., 0.4 mm wall thickness, and 7.6 cm long) through which
12 13 -3

argon flows. The HCD operates at axial plasma densities of 10 - 10 cm

-4
and a background pressure of 2 X 10 Torr in argon, so that the degree

of ionization near the axis ranges from 10 to 50%.

The cathode, and the pumping and diagnostic ports, are grounded,

while the anode runs at a positive potential. The main discharge starts
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easily once the cathode has been heated by a subsidiary magnetron-type

discharge initiated between the starting anode and the cathode.6

As shown in Fig. 5.1(a), the copper cylinder which constitutes the

starting anode is very close to the glass wall. When left to float, it

comes to the wall potential, which is normally close to the anode

potential (see Fig. 5.5). When grounded, it draws about 0.8 A and causes

the potential at the wall to decrease significantly. These observations

show that the starting anode is in good electrical contact with the

discharge. Since, at this radius, electrons move without collisions

along the field lines, it effectively controls the potential at the wall

along the entire length of the discharge. The discharge appears as an

intense blue central core (, 1 to 2 cm diameter, depending on discharge

conditions) surrounded by a less intense external plasma extending to

the tube walls, and has the typical gas-filled electron tube character-

istic of constant voltage for a wide range of currents.

Typical running parameters of our arc are: current from 4 - 40 A;

magnetic field from 0 - 3 kG; pressure from 10 - 10 Torr, and voltage

from 30 - 50 V, depending mainly on the pressure. Current and magnetic

field upper bounds are dictated by the power supplies available to us,

while the ranges of pressure and voltage are characteristic of the arc.

The measurements reported here were performed in argon. Attempts

to run a discharge in helium with the oxide cathode produced a discharge

which was difficult to start and was easily extinguished. Other authors

have reported similar difficulties for gases other than argon.89

There are four identical radially movable probes at the diagnostic

port, located in the same axial plane, and at azimuthal positions indi-

cated on Fig. 5.1(b). Two types of probes were constructed, as shown

in Fig. 5.1(c). Shielded coaxial probes were used for ac diagnostic

studies. Langmuir probes which were used for dc diagnostics were

insulated with a layer of cataphoretically deposited alumina fired in
46

an atmosphere of hydrogen. This particular construction proved to be

very resistant to the high temperature near the axis of the discharge,

which tends to destroy less thermally resistant insulating materials.

Since the probe diameter is much larger than the Debye length, and much

smaller than the ion Larmor radius, the effect of the magnetic field
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on the ions can be neglected. Simple probe theory for the ion saturation

part of the probe characteristic can then be applied, and electron

temperature can be deduced by plotting the electron current, corrected

for the effect of ion current(see Section 4.1.2.).

Axial variations of the discharge parameters were measured using a

long coaxial probe lying along the bottom of the glass chamber and motor

driven from the anode flange. Like radial Probe No. 3, the axial probe

is provided with an electrical position indicator. It could also be

rotated about its axis to check radial variations at various axial

positions. The time-dependent quantities were investigated with the

shielded probes, as well as with the Langmuir probes. Both types yielded

similar results for low-frequency instabilities.

5.1.2. Measurements of instabilities and radial profiles

Under certain conditions of pressure, the voltage-

current characteristic exhibits step jumps in voltage which correspond

to excitation of low-frequency instabilities. The spectra of instabilities

are observed as potential fluctuations on a floating probe, or as density

fluctuations on a probe biased into ion saturation. They are found to

exhibit complicated dependences on the external parameters of pressure

p , current I , magnetic field B , and starting anode potential V
a

Since the arc is highly ionized, the pressure varies significantly

when current is varied at a constant gas flow rate. The instabilities

investigated here are excited when the pressure falls below about
-4

2 X 10 Torr, while increase of pressure above that value is generally

stabilizing. Increase of discharge current, the pressure being kept

constant by increasing the gas flow, is also stabilizing. Observations

made at magnetic fields above about 1 kG indicate that increasing the

magnetic field causes the general noise level to increase, and with it

the arc voltage at constant current.

For I . 10 A, B 1.3 kG, when the pressure is reduced below
-4

- 1.4 X 10- 4 Torr, certain strong coherent modes are excited. These

include a strong oscillation in the neighborhood of 10 kHz, plus its

harmonics, and another at about 70 kHz. The former has significant

amplitude outside the core, is sensitive to the starting anode potential,
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and is the subject of detailed study in what follows. The latter, which is

confined to the core region, tunes with B , and is probably the ion
77

cyclotron mode observed by Chung and Rose.

In view of the complex dependence on the four external parameters,

attention was focussed on the lower frequency instabilities occurring

in the neighborhood of the following standard conditions: p 1 - 4 x l0- 4

Torr, I = 10 A, B = 1.3 kG, and with the starting anode either floating

or grounded. Under these conditions the instabilities have sufficient

amplitude and coherence for good measurements.

The radial and axial dependences of the amplitude and phase of the

fluctuating potential, 1 , and density, n1 , were measured with probes

using the circuits of Fig. 5.2. For ol the floating probe potential

is taken, while n1 is measured by the fluctuating current when the

probe is biased into ion saturation. The phase measurements from the

phasemeter were consistent with the cross-correlation data from the

correlator.

A strong instability at about 9 kHz is easily excited by lowering

the pressure below 1.4 x 10- 4 Torr with the starting anode floating.

When the starting anode is grounded, a somewhat weaker instability at

about 7 kHz develops. We label these Mode I and Mode II, respectively.

As shown in Figs. 5.3 and 5.4, both modes are strongly excited outside

the high density core, with significant radial variation of the amplitude

and phase of potential and density fluctuations. Such measurements, made

with radial probes at various azimuthal and identical radial positions,

indicate that Mode I has an m = 1, while Mode II has an m = -1 azimuthal

variation. Positive m-numbers indicate azimuthal propagation in the

right-hand direction with respect to the magnetic field (the direction

of electron gyration), and negative m-numbers indicate the left-hand

direction. Measurements of the axial dependence of I1I for both

modes, do not indicate the presence of a standing wave of finite wave-

length. Both instabilities have nearly constant phase axially (less

than ±50 change over a length of 70 cm), which justifies the assumption

k = 0 of our theory.
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The presence of Modes I and II influences the steady-state profiles

of potential 0 , density n , and electron temperature T e . Figure 5.5

shows the profiles of floating probe potential for quiescent conditions
-4 -4

at p = 3 X 10 Torr, and with instabilities present at p = 1 X 10 Torr,

both for floating and grounded starting anode. The potential is inverted
5

compared to that of the more familiar positive column [see Fig. 2.6(b)].

This indicated that the electrons are confined better than the ions, which

must have appreciable temperature. Thus, the ambipolar electric field

acts to increase the electron radial current and reduce that of the ions

to equalize them. The sharp rise in potential at small radii is associated

with the rapid drop in n and Te at the edge of the core (see Figs. 5.6

and 5.7). The depression of the potential due to grounding the starting

anode is clearly evident. The increase of arc voltage, VA , from 34 V

to 45 V as the pressure is decreased is attributable largely to the

increased radial plasma loss induced by the instabilities.

Figures 5.6 and 5.7 show the profiles of n and T for the samee

conditions as Fig. 5.5. The reduction of pressure and the onset of

instability is accompanied by a reduction of central density and a

broadening of the density profile, together with an increase in electron

temperature. While it is difficult to separate the effects of pressure

reduction and instability onset, it seems probable that the broadened

density distribution, especially for Mode I, which is the more strongly

excited, is attributable primarily to anomalous radial transport. The

discharge becomes visibly more diffuse with the onset of both instabilities.

Similar observations of the influence of instabilities on the steady
66,77,96

state parameters have been reported by other 
authors.

5.1.3. Determination of radial electric field

The parameter of most critical importance for our

theory is the radial electric field, which can be obtained by differen-

tiating the space potential 0s . However, this is not directly

measurable by a probe in a magnetoplasma, though the floating potential

of can be determined. To find the electric field, we must correct the

measurements of of for the sheath.drop. The full procedure is dis-

cussed in detail in Section 4.1.3.
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There is no precise calculated value available for the constant

c in Eq. (4.2) for measurements in the presence of magnetic field,
81

although a value of around 4 is often taken. We have taken values of

c = 4 and c = 2, and compared the results in Fig. 5.8, where we plot

-E/r proportional to the rotation frequency, as a function of radius.

We plot -E/r since a negative electric field corresponds to an

E X /B2 rotation in the right-hand sense. For Fig. 5.8 we have used

the profiles of of and Te of Figs. 5.5 and 5.7 for the lower pressure,

when the instabilities are present. It should be stressed that these

curves must be considered only as approximate; they depend quite sensitively

on the electron temperature measurements, and are subject to the errors

of differentiation. We have not attempted to extend the determination

of the electric field to very near the axis; there are large gradients

in temperature and potential, and the measurements are less certain

there. As symmetry dictates, the electric field tends to zero at the

axis, and E/r tends to a constant value. The pronounced minimum of

the -E/r curve for Mode I is due primarily to the decrease of the

electron temperature with radius after the plateau shown in Fig. 5.7.

The apparent absence of this plateau, together with the flattening of

the floating potential curve, causes the electric field for Mode II to

be relatively uniform and slightly positive (negative rotation).

5.1.4. Influence of the electric field profile on the

instabilities

It was suspected that Mode II might merge into Mode I

if the starting anode potential were varied from zero to the value it

assumes when floating (VaI in Fig. 5.5). This was done, with the results

that Mode II would disappear at a potential of several volts, and that

Mode I would appear at about + 30 V. For potential profiles between

those for the starting anode floating and grounded (see Fig. 5.8), the

waves were stabilized.

Another method of influencing the excitation of Mode I was suggested

by the fact that the starting anode floating potential was about 5%

lower than VA in the high pressure quiescent regime, and about 5% higher

than VA when the pressure was reduced to the value when Mode I appeared.
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The method consisted of setting the pressure at 2 X 10- 4 Torr, so that

the system was just quiescent, and increasing the starting anode potential

from the floating value by about 5 V, at which point Mode I was excited

at a frequency of 8 kHz. (This may be compared with 9 kHz under the

standard conditions of 1.1 x 10- 4 Torr with the starting anode floating).
-4

Its onset caused the pressure to decrease to 1.8 X 10 Torr. The

radial profile of the amplitude of ¢1 had the same characteristic

double-humped distribution as when the mode was excited under the stan-

dard conditions. Making the radial electric field more negative, by

raising the starting anode potential, is evidently destabilizing for

Mode I. It allows one to compensate for the stabilizing effect of

increased pressure, and follow the instability threshold.

It was noted that the discharge would not run with the starting

anode grounded for fields above about 2 kG. Furthermore, the stabilizing

effect of increasing discharge current seemed to be sufficient to

completely suppress Mode II at currents above 15 A. Thus, the m = -1

mode (Mode II) appears in a rather limited range of discharge parameters,

whereas the m = 1 mode (Mode I) appears at fields above 0.5 kG under all

discharge conditions, provided that the starting anode is allowed to
-4

float and the pressure is in the range 1 - 1.5 X 10 Torr. The frequency

of Mode I increased slightly at higher values of magnetic field and

discharge current.

5.2. Theory

This section presents a brief outline of a theory for

a fully ionized magnetoplasma model, together with a description of the

numerical method of solving the resulting boundary value problem.
1 0 ,11

By resorting to a numerical solution which contains the experimental

values of radial profiles of density and electric field, the spatial

variations of amplitude and phase of potential and density fluctuations

of two observed instabilities are predicted, and the instabilities are

identified as centrifugal flute modes driven by the E xB B2 drift in the

presence of a density gradient, modified by the velocity shear due to

non-uniform E X B /B2 rotation.
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5.2.1. The model

We consider an infinitely long, collisionless plasma

column immersed in a uniform axial magnetic field. The axially symmetric

column is assumed to have a Gaussian number density profile and an arbi-

trary radial electric field. We assume no zero or first order axial

variations in the column, i.e.,k z = 0 . The waves are quasistatic,

quasineutral, and low frequency (w < W .). The radial wave equation
ci

which describes these waves may be derived by using the two-species
22

fluid equations in the isothermal approximation. In using the fluid

equations we neglect ion and electron collisions, electron inertia, and

finite electron Larmor radius effects. The continuity equations for the

electrons and ions are

- + 9 (nv ) = 0. (5.1)
t I ,i

The electron equation of motion is

0 - (nT ) - en(E + v X B) , (5.2)

while for the ions we have

nmi - V(nT.) - " *r + en(E + v. X ) (5.3)

Here n is the number density, v is the species velocity,

Te .i is the species temperature in energy units, E(= - 1 0) is the

electric field, B is the magnetic field, mi is the ion mass, and i

is the viscosity tensor. This collisionless viscosity tensor accounts

for finite ion Larmor radius effects. In cylindrical geometry it can

100
be written as

t. (rr re) (5.4)

c Or a0
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where

1 (v/r) 1 ir
arr = - 2 =  r Br r b '

B(vr /r) By.
(ir/ 1 vi (5.5

oCre= aer 2 Br r e (5.5)

We perturb the variables n, v and 0 in the form
-e, i

n(r,t) = n0 (r) + nl(r) exp i(Wt-me), and eliminate among the resulting
10

first order equations to obtain the radial wave equation

2 2 2

2~ + -r 2+ dr 2 2 ('m WE+md0i)(m-nmE) -0
dr rO r r E di E

(5.6)

where

(r) = rB(m nO = N exp r 2 E(r) = rB
E rO

2Ti dME ( m1E + nxdi/2)
XO - X -(5.7)

'di 2 ' = - m dr (u-n E+ndi )(W l) (5.
eBr 0  E i E

Here, C E  is the rotation frequency due to the E X B/B 2 drift and may be

positive or negative. The diamagnetic drift frequency of the ions,

di ) is a negative constant for a Gaussian 
density profile and uniform

ion temperature. In deriving this equation we used a simple relation between

the perturbed density, n1 , and the perturbed potential. 1 , as obtained

from the electron equations alone, i.e. Eqs. (5.1) and (5.2). This relation is

2m n
2m (~= -mE ) - , (5.8)

Br 0  n

which can also be written as

l -mE n). (5.9)

104di
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Note that the electron temperature has cancelled out of the combined

electron equations, i.e., Eq. (5.8). Thus, these waves do not depend

on the electron temperature, even if it varies radially. This is true
10

even if T is treated as a perturbed variable. The result is an

important simplification since the experimental set-up we are modeling

does have a radial electron temperature variation.

5.2.2. Method of solution

Before we can solve Eq. (5.6), we must specify the

boundary conditions. The equation has a regular singularity at the

origin, so we must use the nonsingular solution. The second boundary

condition is applied at the outer boundary (r = a) and is *(a) = 0

This is dictated by the fact that experimentally n1 = 01 = 0 at

r = a , so by Eq. (5.7) *(a) = 0 . Note that Eq. (5.9) demands that

both n1 and 01 be zero if one of them is.

To study cases where the rotation is not uniform, i.e. the electric

field is not a linear function of radius, we must solve the radial wave

equation [Eq. (5.6)] numerically. To do this, we have modified a

predictor-corrector computer routine for solving ordinary differential

equations to include complex eigenfunctions. In order to eliminate the

singular solution we begin the numerical integration near the origin
m-1

with the form of the nonsingular solution, i.e., cc r , and integrate

outwards. We also integrate Eq. (5.6) inward from the outer radial

boundary, using the boundary conditions *(.a ) = 0 and

di/drla = i'(a) = constant. We then compare the values of '/4

from both integrations at some intermediate position. If they agree,

we have found a proper eigenfrequency, W , and we also have the eigen-

function. If they do not agree, we must guess a new eigenfrequency and

integrate again. An interpolation procedure is used to converge on the

proper eigenfrequency. Once we have the eigenfunction, we may use the

definition of * [Eq. (5.7)] and Eq. (5.9) to find the radial forms of

01 and n1 , the two quantities which are measured experimentally.
1 0 ,1 1
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5.3. Comparison between Theory and Experiment

Comparison between theory and experiment is complicated by

the difficulty of obtaining reliable measurements of the electric field,

as mentioned in Sections 4.1.3. and 5.1.3. However, the measurements

are consistent as to the basic forms of the electric field, and using

approximations to them we can explain both the m = 1 and m = -1

instabilities observed experimentally, including good correlations between

measured and computed eigenfunctions of density and potential.

To compare the theory and experiment in more detail, we have computed

the eigenfunctions of density and potential as described in Section 5.3.

The experimental parameters used in this calculation include a Gaussian

number density profile with rO = 2.2 cm, and an ion temperature of 3 eV.

The density profile is a good approximation to the measured data of

Fig. 5.6, and although the ion temperature was not directly measured,

there has been experimental evidence for values of this order.85

Due to uncertainty in the electric field measurements, the choice

of the electric field profile used in the calculation was guided by the

shape of the experimental curves in Fig. 5.8, and the profile which gave

the best agreement between the theoretical and experimental eigenfunctions.

The profiles selected, shown in Fig. 5.9 for both Modes I and II, are

similar to the experimental curves of Fig. 5.8. For reference, the

initial slope of the Mode I electric field profile of Fig. 10 is 4 V/cm2

The computed eigenfunctions for the perturbed potential, ¢l , and

perturbed density, n I , for Mode I are shown in Figs. 5.10(a) and (b).

They are to be compared to the measured eigenfunctions shown in

Figs. 5.3(a) and (b). The forms of the two sets of curves are very

similar. The potential amplitude has a two-humped profile for both the

theoretical and the experimental curves, the inner maximum being larger.

There is also a large phase-shift associated with the minimum in the

potential curve. Given that nl/nO varies slowly with radius [Figs. 5.6

and 5.10(b)], we can see from Eq. (5.9) that the potential profiles

are controlled by the value of (W-WE). Thus the minimum in 1l1 , and

the large phase shift, occur where (w-WE) has a minimum. There is also

good agreement with the profile of n1 It has a single maximum close

to the center of the column and a gradual phase-shift near the outer
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boundary. The phase-shift between n1 and 1 is in fair agreement

with theory, the theoretical value being about 25% higher than the

experimental value. The computed eigenfrequency is W = (0.18 - i 0.24)Wdi

which gives a real frequency of , 3 kHz as compared to an observed value

of - 9 kHz. However, in a rotating plasma the frequency is a very

sensitive function of the electric field, a parameter that we could not

measure accurately. This frequency is determined approximately by a
101

weighted integral of WE  from the origin to the outer boundary. Also,

especially for the m = 1 mode, the frequency is sensitive to the exact

position of the radial boundary. In fact, if we assume that the wave

amplitudes go to zero at r = 4.5 cm, rather than r = 5 cm, the frequency

roughly doubles. Equivalently, the frequency doubles if we take a

slightly more diffuse density profile with r 0  2.5 cm, instead of

r0 = 2.2 cm. Thus we do not consider the frequency discrepancy as serious.

For the m = -1 mode, a small, positive electric field will cause

instability, which is indeed the type of profile we observe for this

mode. We have reasoned that decreasing the potential at the discharge

boundary is the cause of this field reversal. The electric field

profile taken for Mode II, shown in Fig. 5.9, implies nearly uniform

rotation. The other experimental parameters are the same as for the

m = 1 mode. The computed eigenfunctions are shown in Figs. 5.11(a), (b),

and should be compared with the experimental curves of Figs. 5.4(a),(b).

In contrast to the m = 1 mode, both the experimental and theoretical

potential profiles now have a single maximum located nearer the outer

boundary. The phase shift is more spread out, and can again be attri-

buted to the behavior of (w-w ), as seen from Eq. (5.9). The density

has its maximum nearer the center, with only a gradual phase shift. The

phase shift between n1 and 1l is only about half of that measured.

The computed eigenfrequency is w = (0.10 - i 0.05) di which gives a

real frequency of - 2 kHz compared to an observed value of - 7 kHz.

This is consistent with the low value of frequency calculated for the

m = 1 mode as discussed above.
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5.4. Discussion

From the results of Section 5.3., it is seen that the theory

of Section 5.2. can reproduce the salient features of the two instabilities

that we observe in the HCD and report here. Since the modes are

not localized to a small radial portion of the column, we have not used

a local approximation. Instead, we have treated the problem in cylindri-

cal geometry and computed the eigenfunctions. The discrepancies between

the theory and the experiment are in the precise values of certain

quantities, particularly frequency and phase shift, rather than the quali-

tative behavior of the instabilities. In part, this may be due to the

fact that the instabilities which we measure are nonlinearly saturated,

while the theory considers only linear effects. In addition, we are

working with a strong radial electric field (up to - 10 V/cm); for the

parameters of our experiment this implies that the E X BB velocity

is of the order of the ion thermal velocity. Thus, the ions do not act

strictly like a guiding-center fluid: we believe it is this effect

which makes the ion temperature appear to be as high as . 3 eV, and gives

the observed finite Larmor radius stabilization. Although a more precise

determination of this effect would require a kinetic theory to accurately

describe the ion orbits, we believe that the experimental and theoretical

agreement shown here demonstrates that fluid theory accounts for the

basic features of the instability. Good agreement has also been found

between observed and calculated eigenfunctions for Kelvin-Helmholtz

instabilities in other experiments 1 0 1 where the fluid description of the

ions is not strictly justifiable. In this connection, it may be noted

that while our rotation is nonuniform, especially for the m = 1 mode,

we regard the velocity shear as modifying the simple centrifugal flute

mode for uniform rotation, rather than giving rise to a Kelvin-Helmholtz

type instability due to velocity shear. This is supported by the fact

that the eigenfunction amplitudes do not have a maximum in the shear

region, as in the Kelvin-Helmholtz instability used to explain edge-
101

oscillations in Q-machines.

While our theory neglects collisions, it seems probably that ion-

neutral collisions are not entirely negligible under our conditions.
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The important parameter here is vi/Wci , where vi is the effective

ion-neutral collision frequency for momentum transfer. It is difficult

to estimate v. in the various experiments with any precision, in view

of the uncertainties of the ion distribution and the neutral concentration

in the arc. On general grounds, we may expect ion collisions to have the

following effects: as vi/w ci is increased from zero, the collisionless

orbits will become increasingly disrupted as vi/Wci becomes comparable

with unity. This would lessen the importance of ion inertia and centri-

fugal effects in causing a destabilizing ion drag relative to the electrons,

and with it the finite Larmor radius stabilizing effect, and replace

it by a destabilizing ion drag due to collisions. This hypothesis is

supported by our observation that as the pressure is raised from
-4

p = 1.0 X 10-4 Torr, where we observe the m = 1 mode, the instability

is quenched at p , 2 X 10- 4 Torr, while at p . 4-5 x 10- 4 Torr another

one sets in. This, however, we have not investigated in detail.

A generalized theory is required, including both collisionless and

collisional effects. It might be expected to disclose the transition

between the two types of instability as the pressure is varied. It is

also clear that to identify the instabilities of the HCD unequivocally,

detailed consideration must be given to the critical steady-state

parameters of neutral pressure, radial electric field profile and ion

temperature.
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6. CONCLUSIONS

We have presented a study of the positive column and the hollow

cathode discharge (HCD), with an emphasis on the steady-state character-

istics and low-frequency instabilities excited by sources of free energy

in the two plasmas. A theory for the steady state of the positive column

in the transition from the collisionless (low pressure) to collisional

(intermediate pressure) regime was presented in Section 2. It is based

on three moments of the Boltzmann equation in the presence of static

axial magnetic field and axial current. In addition to the results

obtained by the isothermal (two moment) theories,3 Section 2 gave the

radial profiles of electron and ion temperatures and demonstrated the

similarity laws for the positive column. Good agreement between the

calculated and measured similarity laws was shown for He. The ion

temperature was shown to vary significantly with radius: it increases

from close to neutral temperature near the axis to about 1 eV near the

wall in He.5

Another aspect of the theory of the steady state of the positive

column was treated in the Appendix, where it was shown that the results

of isothermal theory for an infinitely long column can be easily applied

to the column of finite length. This is important for the case of a

magnetized column at low pressures, where the axial motions of charged

particles are collisionless, while their radial motions are effectively

collision-dominated, due to the confining effect of magnetic field. The

axial end effects in such cases may be important, even though the

column is physically much longer than its radius. 6

The time-dependent characteristics of the positive column were

considered in Section 3 through a study of the excitation characteristics

of the ion acoustic instability driven by the axial current. Analysis

based on a linearized kinetic model, with zero order discharge character-

istics given by the results of Section 2, was shown to predict a

convective instability (spatial amplification). The calculated spatial

growth rate shows frequency dependence similar to the amplitude spectra

of ion acoustic waves near the instability boundary, measured in our

positive column experiments in He and Ar. The importance of ion Landau

damping of the wave for typical experimental conditions was also

demonstrated.
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The literature dealing with HCD was reviewed in Section 4, and it

was shown that measurements of steady-state and time-dependent character-

istics are often incomplete. Furthermore, the theoretical models used

in identifying the various observed instabilities are often so idealized

that they cannot apply to the HCD. Section 5 presents results of

meaurements of steady-state characteristics of our HCD, together with

detailed observations of two low-frequency instabilities. The insta-

bilities are identified as centrifugal flute modes, driven by Hall drift

in the presence of radial density gradient and non-uniform radial electric

field. The identification is based on the agreement of calculated and

observed frequencies, azimuthal mode numbers, and radial profiles of

phases and amplitudes of density and potential fluctuations.

The research presented in this work has led to an increased under-

standing of the basic processes which determine the steady-state and

time-dependent characteristics of the two plasma sources. Specific

suggestions for further work were given at the ends of the respective

sections (e.g., Sections 2.4., 3.4., 4.3. and 5.4.). Especially

important within the context of this work would be further experimental

and theoretical studies of the processes by which the energy of electron

drift motion is dissipated into increasing the energy of random motion

of charged particles in the two plasma sources, i.e., into plasma

turbulence and heating. For example, a promising direction for further

research would be the investigation of how high axial current, perhaps

in the form of a pulse, would affect the characteristics of plasma.
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APPEND IX

Steady-State Theory of a Discharge Column in a Magnetic Field:
Separable Solutions for a Finite Cylinder*

D.B. Ili6 and S.A. Self
Institutefor Plasma Research, Stanford University, Stanford, California 94305

(Received 17 January 1972)

The problem of the steady state of a magnetized discharge of the positive column type, in
the case of a finite cylinder, is shown to have separable solutions for the radial and axial
dependence of plasma density, potential, and electron and ion velocities. Consequently, the
results of the corresponding one-dimensional theory may be directly applied to the two-
dimensional case. In particular the theory is applicable to the case of a low-pressure dis-
charge in a strong magnetic field, where the radial flow is collision dominated but the
axial motion is collisionless.

I. INTRODUCTION For a discharge in a uniform external magnetic field B,

The steady state of dc or rf discharges, maintained by the one-dimensional problem is modified for flow across

volume ionization against wall recombination, has been the field by the effect on the electrons and, to a lesser

analyzed rather extensively in the case of the one-di- extent, the ions. For high pressures, the ambipolar dif-

mensional problem (infinite slab or cylinder). Such the- fusion theory was generalized to this case by Tonks.

ories predict the profiles of plasma density n, potential For low pressures, the transverse electron motion be-

0, average velocities ve,4 , and sometimes temperatures comes collision dominated for very weak magnetic

T,, of electrons and ions. The treatments vary consid- fields, and the assumption of a Maxwell-Boltzmann dis-

erably, depending on the pressure regime, and whether tribution can no longer be made. Treatments using two
an external magnetic field is present. Most theories moment equations for the electrons, and collisionless

assume quasineutrality n,= nj( n) and thereby do not moment equations including inertia for the ions, have

treat the sheath region adjacent to the wall. been given. Forrest and Franklin8 used two moments
for the ions, neglecting the magnetic field on the ions,

For unmagnetized discharges at pressures (strictly the while Self9 used three moments and included the mag-
pressure-radius product) high enough so that both elec- netic field on the ions. To deal with the magnetized dis-
trons and ions are collision-dominated, the ambipolar charge at arbitrary pressure, Ewald, Crawford, and
diffusion theory' employs the first two moments of the Self" generalized the treatment of Self and Ewald by in-
Boltzmann equation (i.e., continuity and momentum cluding the magnetic field in the two-moment equations
transfer) for electrons and ions, neglecting inertia, the for electrons and ions, using the isothermal assumption
set being closed by assuming constant temperatures Te, and including ion inertia. A similar treatment, but ne-
Tj (isothermal assumption). At lower pressures, where glecting the magnetic field on the ions was given by For-
the particle motions are collisionless, it is common to rest and Franklin." The solutions for the profiles of n,
assume that the electrons obey a Maxwell-Boltzmann p, and ve,i, depend on pressure and magnetic field pri-
distribution, while the ions are treated either by exact marily through the parameter C2 - [1 + (Wceve)2](1 -A)/
equations of motion' 3 or by collisionless fluid equa- (Me/ 1 i), where the mobility ratio ( ge/M. ) is a function
tions. 4, In the latter case, use is made of either two only of gas type. For low pressures and low magnetic
moments neglecting pressure, or three moments ne- fields (C2 , 1) the results approximate those of the low-
glecting heat flow. By including ion inertia, all the the- pressure field-free theories. With increasing pressure
ories for low pressure lead to a plasma-sheath bounda- and, or magnetic field, the results go over to those of
ry not given by the inertialess ambipolar diffusion theo- the ambipolar diffusion theory but with a plasma-sheath
ry. A unified theory for a one-dimensional unmagne- boundary. It should be noted that the magnetic field
tized discharge at arbitrary pressure was developed by causes the transverse flow to become collision dominat-
Self and Ewald, 6 using two moments for electrons and ed even though the pressure is low and motion along the
ions, including ion inertia and using the isothermal as- field is collisionless.
sumption. In this work, the pressure appears via a pa-
rameter A= v'/(v'+ v ) where v' is the electron colli- For two-dimensional discharges (e. g., finite cylinder),
sion frequency In the low-pressures (A - 1) limit the re- solutions by separation of variables have been found in a
sults approximate those of the low-pressure theories, number of cases subject to an assumption that the flow
while at high pressures (A - 0) they go over to those of is separately ambipolar in the two dimensions. This as-
the ambipolar diffusion theory, but with a plasma-sheath sumption, that v,.= v,. and vi,= ve, for (vi,- ve,) = J,(r)/
boundary at the wall. en(r), independent of z, to allow for an axial current]
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excludes the possibility of Simon diffusion'2 in a dis- sponse to an externally applied voltage. According to

charge with conducting walls. For high pressures, the Eqs. (2) and (3) it must depend only on r; thus

inertialess ambipolar diffusion theory, both with and ne(vf, - ve,) =J,(r). (4)
without an axial magnetic field, has been solved for a

finite cylinder by separation of variables by Brown. 13  We note that in general the azimuthal (Hall) current is

For low pressures, and B= 0, Kino and Shaw4 solved nonzero (v #vid).

two-dimensional problems by separation of variables, The equation of momentum transfer, assuming constant

using a Maxwell-Boltzmann distribution for the elec- temperatures T,i (energy units) may be written for ei-
trons and two moments for the ions, including inertia, ther species:

but neglecting pressure. They also assumed that the ion

motion was irrotational (V xv, = 0). (v. V)v = (q/m)(E + v XB) - (T/m)V Inn - v'v, (5)

In recent years, a number of long cylindrical discharge where ' v'+ v, and v is the collision frequency for

configurations have been employed for the study of plas- momentum-transfer collisions with neutrals.

ma-wave propagation and instabilities. These include For electrons, Eq. (5), neglecting the nonlinear inertia
the low-pressure positive column, the hollow cathode term, may be solved for the velocity components
arc, and electron cyclotron resonance discharges. Typ-
ically, in all these cases, the pressure is low and the 8 - D lnn

magnetic field high, so that while the axial motion is es- er

sentially collisionless, the transverse motion is colli-

sion dominated. Under these conditions, the axial plas- vee = (cOce/v')vr, (6b)

ma flow may dominate the radial flow, even though the ,a lnn

column is physically very long compared with its diam- vez = Ae - D z - (6c)

eter, and a suitable two-dimensional steady-state theory
is necessary to describe it. The problem was recognized where wc is the cyclotron frequency, and the parallel

by Flannery and Brown' 4 in a study of current-driven and transverse mobilities and diffusion coefficients are

perturbations in a hollow cathode arc. They used the in- defined by

ertialess diffusion equations for the transverse motion
e T

and took account of the axial free streaming by an ap- = -7, D'= -. ,

proximation based on the theory of Self and Ewald. mee m

In the present work, we show that within the formulation D e
of Ewald, Crawford, and Self'o for a discharge in a mag- e~= 1+ (w/v')e '  D= 1+ (w--')

netic field at arbitrary pressure, separable solutions

may be found for two- (or three-) dimensional problems. Retaining the nonlinear inertia terms for the ions, we

Thus the problem of the finite cylinder reduces to the have from Eq. (5) the component equations

separate problems for axial and radial flow, for which vv, - +v r TL aInn
solutions have already been given. In particular, this v, +v = - v vr,
allows a proper description of the important case of a ar r 8z mi ar mi ar

magnetized discharge column at low pressures, where (7a)

the axial flow is collisionless, but the radial flow is col- rvi + V e+ v = - , (7b)

lision dominated. ary r wv

II. THEORY v, +va e 8 T L 81nn v. (7c)

vr az m, 8z m t 8z
Consider a cylindrical weakly ionized discharge of radi-

us a, length L, in a uniform external magnetic field B,, Taking n and (P to be separable in the forms n = n061(r)

maintained by volume ionization at a rate v '(T,)n, where xZ(z), (p = r,(r) + (p,(z), and Jodl(r), where subscript

n= ne=n is the plasma density in the quasineutral ap- zero refers to the origin, it follows from Eqs. (4), (6),

proximation. In general, all quantities are functions of and (7) that vr, ve, vi depend only on r, while ve, Vis

coordinates r and z, but are assumed independent of az- depend only on z. Then Eqs. (7a) and (7b), give the ra-

imuth 0. dial dependence of v,, via and are identical to Eqs. (6)
and (7) of Ref. 10 with 3= 1 for an infiitte cylinder,

The continuity equations for electrons and ions are while Eq. (7c) gives the axial dependew of vi, and is

V. nve, = v'n. (1) identical to Eq. (7) of Ref. 6 for planar , eometry.

Combining them we have On expanding the continuity equation, vw note that it

V. (nve - nv)= 0. (2) separates into radial and axial parts

dv+ v. d(lntR)
For insulating walls, we must have v , .= vi, at r= a. d +! + v'dr= v',= const, (8a)
While this condition is not sufficient to ensure that the

radial flow is ambipolar everywhere, we shall consider dv d(InZ) = const, (b)
only the case where this holds. Thus dz + dz

ver= var,. (3) where

In general a current J, flows in the axial direction in re- v + 1= v. (9)
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This indicates that the plasma generated at a volume prescription for determining the ratio vi'/i=A/A, cor-
rate vn at every point flows radially and axially in a responding to some particular experimental conditions.
fixed ratio v/. For a one-dimensional discharge it was pointed out in

Refs. 6 and 10 that it is usually possible to determine
Equation (8a) is identical to Eq. (9) of Ref. 10, when all the parameters appearing in the theory with reason-
A is replaced by A,. Together with E. all the parameters appearing in the theory with reason-

A isreplacedbyA= . Together with Eqs. able precision from experimental values, with the ex-
(6a), (7a), and (7b), it forms a closed set for the quan- ception of v'. This is because the electron distribution
tities 6(r), p,(r), vr(r), and vi(r), identical to the is never accurately Maxwellian at high energies, so that
treatment of Ref. 10 for an infinite cylinder. Conse- calculations of vt(T.) based on known collision cross
quently we may use the numerical solutions given there sections and a Maxwellian electron distribution can give
for these quantities. Furthermore, it was shown in Ref. quite incorrect values. On the other hand, it was shown
10 that the solutions have a singularity, identified as a that, knowing the other parameters, one can use the
plasma-sheath boundary at r= a, where v,= c,- [(T numerical results for the normalized dimensions
+ T1)/maiz2 , the ion sound speed. Numerical values of sr,,(R, A, C, 7), in conjuntion with the definitions of s,.,,the normalized tube radius to determine the value of vi, and a graphical procedure

sr (m/Te)"2zva (10) was given for doing so. For the finite cylindrical dis-
charge, similar methods may be used, employing thewere given as a function of the normalized parameters numerical values of s, and s, for the radial and axial

R'=- (/I)/(1 -A), A (taken as A r in the present case), solutions to determine vr and v; and thus fully specify
Tr T1/Te, and C2 - [1 + (wc,/v.)](1 -A)/R. These may be the parameters in the theory appropriate to a particular
used, in conjunction with similar results for the axial experimental discharge.
problem, to determine the ratio vr/v as described be-
low. This is particularly simple to do for the case of a mag-

netized low-pressure discharge such that the axial flow
Considering now the axial dependence, Eq. (8b) is iden- dominates the radial flow (v'I <<v v- - ui). For the axi-
tical to Eq. (9) of Refs. 6 and 10, when A is replaced

by A,=- , al problem we may use the analytic result, Eq. (13), inby A, v/v'. Together with Eqs. (4), (6c), and (7c), it the approximation R' >1, 7<<1,
forms a closed set for Z(z), 4,(z), ve,(z), and vj,(z).
These equations differ from those of Refs. 6 and 10 s, (m,/T)'1 2 1L= T -1 0. 57, (14)
through the inclusion of the axial current in the present
case. Elimination of P, and ve, between Eqs. (4), (6c), to determine v,= v'. For the radial problem we may use
and (7c) yields the analytic result corresponding to the ambipolar dif-

(-dv, m dlnZ =m.v (10  1 fusionlimit, T<<1, C>>l,_v, + Me. + cS T -_mi \ Z (11)Sdz m, dz m, z1 noe- Z
s, (mS/Te)'2 via = 2.4/Alr C, (15)

From Eqs. (8b) and (11) we have to determine A,= v'/Wv, and hence v.

do_ v,c + (vi+ muv/m,)v - (mev/m)(Jo/noe)v,Z"1.  From Eqs. (14) and (15) we then have
dz co - v4 dzt--oV (0-'r ' 2.4 2 (L/2a)

(12) 0. 571

This shows the occurrence of singularities where vi, (2.4/0.57)2 (A/ ) (L/2a)a
= +c, corresponding to plasma-sheath transitions at (m1T,)12vL ( v << 1. (16)
the axial boundaries. In general, Eqs (8b) and (11) 2

must be solved together numerically for v ,(z) and Z(z), This gives a condition on the length/diameter ratio,
and hence v,,(z) and 4,(z), as discussed below. magnetic field, and pressure, that the discharge be

In the case of zero axial current (vf,=v.,) corresponding dominated by flow to the ends rather than the side walls.
to an rf-maintained discharge, Eq. (12) may be inte- Typically g/ip z= 50 - 500 for most gases, while the
grated to give analytic solutions for v,, 4,, and Z as term (mf/T,)/2 vfL is a measure of the probability
discussed in Ref. 6. In this case the discharge is sym- (<< 1) that an ion suffers a collision in transit to the
metric about the center plane which is conveniently tak- ends. Thus it follows that the ratio wc/ev, must exceed
en as the origin z= 0. The normalized half-length is the ratio L/2a by a considerable factor before the end
given, from Eq. (20) of Ref. 6, as losses become dominant.

Im \'/2  L It remains to discuss the effect of axial current on the
s, v ~ 2 axial profiles, which must be found by solving Eqs. (8b)

and (11) numerically. In this case the profiles are no
(1 + T)1/a 1+ 1/R' + A tan. 1 + 1/R' (1 + )1 /2 longer symmetric about the center plane and it is con-

(1+1 /R') /2  A, 1 + 1/R' ' venient to take the origin z= 0 at the point where v4= O.
Some typical computer solutions for the profiles of n,

(13) 0,, and vi, are shown in Fig. 1, for various values of

where 7= T/T, and R'= (g.J1g)/(1- A). normalized current. The normalized distances to the
plasma-sheath boundaries s,. and s,_ are no longer

To complete the solution for a finite cylindrical dis- equal, and in place of Eq. (13) we must use the condi-
charge in the case of zero current, it remains to give a tion
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FIG. 1. Axial profiles of normalized ion velocity u = (mi/Tl/2vi,, plasma density Z =n(z)/n(O), and potential Tl -ek/T e vs
normalized distance s =(m,/T) 112 i'z, for various values of normalized current density f (Jo/noe) (m/T)'/2/R', computed for
low pressures, An 1, and zero ion temperature, 7= 0.

sc.- s,-= (mo/Te) 12 v;L. (17) ents. To describe this situation one must abandon the

However, in practice, the numerical solutions show that isothermal assumption and employ the third-moment

for moderate currents, s,. - s,. =2s, where s, is the (heat-transfer) equations. Furthermore, if the plasma

value with zero current. Consequently, for moderate is appreciably ionized, it is necessary to include colli-

currents, it is sufficient to determine the parameters sions of charged particles among themselves. While

v', v using the results for zero current, as described one-dimensional theories can be developed on this basis,

above. we have so far been unable to find separable solutions
for two dimensions in this case.
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